
Pinky∗: A Modern Malware-oriented Dynamic

Information Retrieval Tool

Paul Irofti

July 12, 2013

Abstract

A multifacet tool that aids the entire pro-
cess of antimalware development starting
from laboratory work and bulk-analysis,
to reverse-engineering investigations of hot
samples, to creating mix-and-match dy-
namic and context aware signatures, all the
way up to the in-field deployment process
of pro-active behaviour-based detection and
universal unpacking safety-net.

1 Introduction

When development began on this ambitious
project, the antimalware scene was fully de-
veloped and had a lot of research put into
the problems that arise with dynamic tools
and information retrieval techniques. In
fact, the research started moving so fast
that traditional security companies were a
bit behind on the new discoveries and algo-
rithms concerning heuristics, instrumenta-
tion and compiler design. This sprinkled a
keen interest in developing a new tool from
the ground-up with the building-blocks set

∗this is just a project codename and can be

changed once a product name is chosen

in post-2010 research advancements.

Being a small team of experienced re-
verse engineers, very well accustomed to the
legacy yet fascinating 1990 technology for
emulating samples used in popular antimal-
ware products, we decided that it’s time to
bring on a new product to the table.

A product that won’t resume itself to be-
ing just an emulator.

A product that will take technology
further and match the needs of modern
reverse-engineers and white-hats.

A product that will be able to adjust as
it goes to new platforms, new research, and
to new analysis techniques by being not just
an input - output blackbox as its predeces-
sors, but a blackbox with a feedback loop
that allows the system to be observed, con-
trolled and adjusted to properly meet the
needs of its masters.

2 High Level Solution

Pinky is designed as an opaque tool with a
clear and simple interface that allows it to
be integrated and controlled by third-party
applications in a non-intrusive way.

It is platform independent. The samples



it analyzes are agnostic of the platform it
is ran on. For example you can analyze a
Windows 32-bit executable on a Linux dis-
tribution running on a MIPS-64 platform.
Thus it can be used both on the server mar-
ket, serving for example as a mail-scanner,
and on the client market aiding an existent
antivirus solution.
The emulator is very fast due to it’s mod-

ern virtual machine implementation that
coupled with the just-in-time compilation
strategy and a performant caching system
gives one of the fastest malware-targeted
dynamic analysis tools in the industry.
Pinky is also used as a tracer. It can give

traces of system calls and native APIs (such
as ntdll.dll, kernel32.dll, advapi32.dll and
so on) with the extending possibility of also
capturing TCP/IP traffic.
Pinky has a generic information retrieval

framework that is designed to serve every
need it’s surrounding environment might
have in coming up with a proper verdict on
a given sample.
It is designed with ubiquitous dynamic

instrumentation in mind. At any point in
the emulation process, Pinky can provide
feedback on the state it’s in. Examples like
mapped memory, registers, stack, text sec-
tion, filesystem state come to mind.
As an added bonus, the instrumentation

framework has no performance impact on
the emulation process.
The emulator has a callback system setup

that permits context-aware signatures and,
through the instrumentation framework,
behaviour-based detection that can aid in
pro-active comparative tests ratings.
Also aiding both basic and pro-active de-

tection is the ability to act as a universal
unpacker that helps to cope with new or

custom packers or even new versions of the
existing ones.
Pinky is also a laboratory tool. It can

be used as an analysis and information re-
trieval tool by reverse engineers just like Ol-
lyDBG or IDAPro with the benefit that this
was built and designed with malware inves-
tigation in mind so it has more field specific
functionality than the other two.
As a lab tool it can also be used in bulk

scans to craft generic or specific reports.
The generated data can include sample ge-
ometry, memory dumps, classification cri-
teria, profiling data and so on and so forth.

Another unique feature is the ability to
stop the emulation process in a coherent
and platform agnostic fashion. This im-
plies reproducibility no matter of the CPU
frequency, memory size or type, disk IO
throughput and other machine dependent
factors.

3 Solution Details

In order to make integration easier, Pinky
is provided as a library. In both static and
dynamic forms.
So far Pinky has been integrated and

used successfully in an antimalware engine
environment (acting as a generic unpacker
and memory inspection tool doubling the
product’s detection rate), as a bulk scan-
ning tool for malware and clean sets, and
also as a debugger-like reverse-engineering
tool for sample analysis. Three applications
that seamlessly integrated the library with
success.
Pinky-based solutions are being used

with success on multiple operating sys-
tems and hardware platforms. For exam-



ple the bulk scanning tool runs on Linux,
OpenBSD and Windows with 32-bit and
64-bit Intel-derivate CPUs. Also quick
nightly scans are conducted on a plethora
of system configurations, both big endian
and little endian, with hardware platforms
such as Intel 32-bit and 64-bit, ARMv5
and ARMv7, MIPS-64, PowerPC, Sparc,
Sparc64, HP-PA, and on operating sys-
tems such as Windows versions from Win-
dows XP up to Windows 8, OS X, Linux,
FreeBSD, OpenBSD, NetBSD, Solaris, Illu-
mOS, Darwin and others.
Pinky is written in C++ with a focus on

the C-subset of the C++ Language. Thus,
besides being portable, the C++ interface
makes it very easy to integrate, natively or
through wrappers, in virtually any project
no matter of the language chosen.
The interface is simple and intuitive. It

consists of three parts: the emulator inter-
face, the configuration interface and the in-
strumentation interface. It is implemented
through abstract virtual classes that make
it easy to decouple from the rest of the
project.
The emulation speed is given by tiered

compilation through threshold-based mix-
ins of JIT compilation and VM emula-
tion. Even more, every codeblock that gets
through is cached and will be reused the
next time it’s encountered. Currently there
are two caching strategies to choose from.
Further optimizations may occur when a
codeblock is seen often enough. If a plat-
form is missing JIT support, it will always
fallback on the VM implementation which
is very fast due to the custom orthogonal
ISA and its optimized opcodes.
Instrumentation is done by dynamically

enabling and disabling information retrieval

points throughout the emulation process.
Data points can even respect a certain
caller-callee protocol and exchange data
structures that can affect the sample’s con-
trol and/or data flow.
The emulator supports as many instru-

mentation points as needed due to the zero
performance impact when the points are
disabled.
One can create complex scenarios that

play with enabling and disabling such
points of interest in order to profile or ana-
lyze a certain path the sample might take.
Or better, creating behavioural detection
patterns that boost pro-active rates and
heuristic detections.
The callback system is designed with the

antimalware engines eco-system in mind.
For example a common issue that comes up
in the field is handling polymorphic routines
in static unpackers and coping with the dif-
ferent versions and variations in the wild.
This can get to a point where the static rou-
tine gets so complex and has to deal with so
many cases that it slowly turns into a crip-
pled dynamic analysis tool. To solve such
cases, Pinky can be used to patch things
up. Let the static unpacking process run
until the offending polymorphic routine is
reached. Stop and handle things over to the
emulator which will dynamically unpack it
and then give control back to the static rou-
tine.
When used as a reverse-engineering tool,

it can act as a debugger by setting break-
points, watches, single-stepping at different
granularity (e.g codeblocks or instructions),
setting different instrumentation points at
runtime, tracing system calls and library
APIs, enabling different logs at various log-
ging levels for discrete periods of time, and



many other similar useful features.

4 Business Benefits

This product is designed to boost detection
rate through integration with the rest of the
engine eco-system. Not only that, but due
to its dynamic nature it will also increase
significantly the pro-active results visible in
antivirus comparative tests and through the
user-base.
Thorough tests can be ran in the labo-

ratory and, through information retrieval,
new heuristics can be added and the old
ones can be adjusted bringing false positives
down and keeping once-again pro-active de-
tection up.

An engineer can quickly setup through
instrumentation a look-up routine that once
scripted into a bulk scan can lead him to a
conclusion very fast be it in regards to a
family of malware, a general rule-of-thumb
for a specific set of samples, or other statis-
tics that might be of interest. This has
shown in our laboratory that is much more
effective and a lot less time consuming than
scripting a similar routine for IDAPro or Ol-
lyDBG.

The speed-up compared to using other
virtual-machines is considerable and it’s
highly visible when running bulk scans on
millions of samples. The high-speed and
low-memory footprint is also very welcomed
and appreciated by the end-users.
Another great feature is the ability to

provide it to reverse-engineers as a very ac-
curate customizable sample dissecting tool
bringing faster detection and unpacking
routines along with more accurate disinfec-
tion scripts.

5 Conclusions

This is a turnkey product.
It can be quickly integrated into any ex-

isting solution and with minimal effort at
that.
Being of modern design it has an inner-

module decoupled design and so it’s eas-
ily adaptable to specific needs, be it spe-
cific hardware dedicated algorithms, mem-
ory or on disk size constraints, acceler-
ated throughput for special performance
oriented chips, and so on.
The instrumentation framework allows

for us to fulfill on demand crafting of infor-
mation retrieval policies or data acquisition
strategies that the upper layers might need
from the product.
All-in-all it’s a very dynamic production-

ready product with multiple modes of oper-
ation that is used with great success in the
field by both companies and end-users.


