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Chapter 1

Prologue

Sparse representations are intensively used in signal processing applications,
like image coding, denoising, echo channels modeling, compression and many
others. Recent research has shown encouraging results when the sparse sig-
nals are created through the use of a learned dictionary. This raised the
following optimization problem

minimize
D,X

‖Y −DX‖2F
subject to ‖x‖0 ≤ s, ∀x ∈ X,

that attempts to find the best dictionary D generating the best sparse rep-
resentations X when modeling a given set of signals Y with a target sparsity
of s imposed on each sparse signal x from X. This is a hard open problem
for which the signal processing field has been able, so far, to only offer lo-
cal minima solutions that are usually very involved and take a long time to
process.

The current study focuses on finding new methods and algorithms, that
have a parallel form where possible, for obtaining sparse representations of
signals with improved dictionaries that lead to better performance in both
representation error and execution time.

In Part I we start by describing in Chapter 2 the tools for obtaining the
sparsest solutions and the guarantees they provide along with the currently
available dictionary design strategies. We continue with Chapter 3 where
we present the OpenCL parallelism framework along with the analysis and
efficiency indicators for optimal implementations.

In Part II we attack the general dictionary learning problem by first
investigating and proposing new solutions for the sparse representation stage
in Chapter 4 and then moving on to the dictionary update stage in Chapter
5 where we propose a new parallel update strategy and describe its effect

15



16 CHAPTER 1. PROLOGUE

on existing algorithms. Lastly, we study in Chapter 6 how mixing different
representation algorithms with different dictionary update methods affects
the quality of the final dictionary.

Part III focuses on dictionary learning solutions where the dictionary has
a specific form. In Chapter 7 we propose a new parallel algorithm for dictio-
naries structured as a union of orthonormal bases. Next, in Chapter 8, we
study the cosparse view on dictionary learning and propose new algorithms
for creating cosparse orthogonal dictionaries. Finally, in Chapter 9 we anal-
yse denosing through dictionary learning and propose new methods based on
composite dictionaries.

We conclude this thesis in Part IV where we list and describe our contri-
butions and present future research directions.



Part I

Field Overview
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Chapter 2

Dictionary Learning

We start this chapter by presenting the sparse representation field [1–3] and
its guarantees in providing the sparsest solution to a linear system of equa-
tions. In the second part we shift focus from the solution towards its rep-
resentation matrix and the different design strategies used for promoting
sparsity.

2.1 The l0 Pseudo-Norm

We attempt to provide sparse solutions for the underdetermined linear sys-
tems of equations of the form

Ax = b, (2.1)

where A ∈ Rn×m is full rank, with n < m.
Our interest is providing the sparsest solutions possible and so we will

focus almost exclusively on the l0 pseudo-norm which acts as a non-zero
indicator on the support of a given vector x:

‖x‖0 = |{i : xi 6= 0}|, (2.2)

where |.| denotes the cardinality of the set.
It is called pseudo-norm because it does not satisfy all the properties of

a proper norm.

Definition 2.1 A proper norm follows:

• zero vector: ‖v‖ = 0 if and only if v = 0

• absolute homogeneity: ‖tv‖ = |t|‖v‖, ∀t 6= 0

• triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖

19



20 CHAPTER 2. DICTIONARY LEARNING

While l0 respects the zero vector and the triangle inequality properties,
the non-zero element counter behaviour breaks absolute homogeneity.

The l0 optimization problem for solving (2.1) is

min
x
‖x‖0 subject to Ax = b. (2.3)

New and existing solutions, algorithms and implementations for this opti-
mization problem are discussed and analyzed in detail in Chapter 4.

2.2 When is a solution the sparsest solution?

Knowing that l0 provides us with the most sparse solution possible we present
here some of its known properties such as uniqueness, stability and perfor-
mance in order to motivate its core position in our study.

2.2.1 Uniqueness Constructs

Given a sparse solution x of the linear system Ax = b, can we tell if it is the
sparsest one? In this subsection we present the tools available for answering
this question.

The first result is based on the property of the matrix A called the spark
[4, 5].

Definition 2.2 The spark represents the smallest number of linearly-dependent
columns of a given matrix.

The spark is used in the following theorem:

Theorem 2.1 If a given sparse solution x of the linear system Ax = b has
‖x‖0 < spark(A)/2 then it is also the sparsest.

Finding the spark is not an easy task because it involves sweeping through
all possible column subsets and perhaps that is why weaker but faster bounds
such as the mutual-coherence [6–8] bound are preferred.

Definition 2.3 The mutual-coherence is the absolute largest normalized inner-
product of the columns of a given matrix.

For a matrix A, this can be formally written as

µ(A) = max
i 6=j

|aTi aj|
‖ai‖2‖aj‖2

. (2.4)
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Mutual-coherence lower-bounds the spark, as proven in [2], according to the
following relationship:

spark(A) ≥ 1 +
1

µ(A)
(2.5)

and can guarantee the sparsest solution was reached as shown in [8]:

Theorem 2.2 If a given sparse solution x of the linear system Ax = b has

‖x‖0 < 1
2

(
1 + 1

µ(A)

)
then it is also the sparsest.

2.2.2 Stability for Sparse Approximations

When performing sparse approximations, instead of exact solutions, the
uniqueness of a given solution, using tools like the ones presented in the
last subsection, can no longer be claimed.

Approximations can present feasible solutions that are susceptible to scal-
ing and, worse, they can have different supports while maintaining the same
l0 cardinality that still make them the sparsest possible. That is why we are
interested in the stability [9,10] of these solutions: if a solution is found that
is also the sparsest we want to be sure that it is also the best within a given
margin ε. Put differently, we want to be sure that the others are also nearby.

A mutual-coherence based result from [9] states that:

Theorem 2.3 Given a sparse solution x0 that satisfies the mutual-coherence
criteria from Theorem 2.2 and that provides an approximation within a given
error ε (‖b − Ax0‖ < ε), then the distance to every other feasible sparsest
solution x is bounded by

‖x− x0‖22 ≤
4ε2

1− µ(A)(2‖x0‖0 − 1)
. (2.6)

Another powerful tool that can also be used for stability analysis is the
restricted isometry property [11,12] (RIP):

Definition 2.4 Given a matrix A with normalized columns and an integer
s such that As represents the matrix A restricted to only s columns, suppose
there exists a quantity δs, that is also the smallest, such that for all possible
submatrices As the following holds true:

(1− δs)‖c‖22 ≤ ‖Asc‖22 ≤ (1 + δs)‖c‖22 ∀c ∈ Rs. (2.7)

Then A is said to have an s-RIP with a δs constant.

Using this definition it has been shown in [2] that we can get to the same
stability claims from Theorem 2.3.
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2.2.3 Performance

Sweeping across all the column subsets of A to find the sparsest solution
or approximation x to the linear system Ax = b is clearly a hard and time
consuming task. Even so, empirical evidence of various greedy pursuit al-
gorithms has shown good results which triggered researchers to look at the
average performance instead of focusing on the worst-case scenario.

Probabilistic average performance analysis started with the work from [13]
on fixed and structured matrices A. Others shortly followed [14–17] and
showed that even though the worst-case scenario is grim we can still hope
for good enough results when employing pursuit algorithms. Soon after, a
breakthrough from [18], continued in [19], has shown that the above results
also hold for unstructured random matrices.

These results motivate our focus on greedy pursuit algorithms that work
in tandem with both structured and random matrices A.

2.3 Dictionary Types

So far we looked at how we can find the sparsest solution or approximation x
of the underdetermined linear system Ax = b where both A and b are fixed. In
this section we turn our focus towards the properties of A and its sparsifying
effect on the final solution x. If we turn this into a representation problem,
then x is the expression of b through the matrix A. A sparse representation
of x would then seek the sparsest solution which is the solution that uses the
least amount of columns from A in its representation. From this perspective
the literature often refers to matrix A as a representation dictionary D whose
columns are termed atoms.

The crude dictionary form is built from popular matrix transforms such
as Fourier, discrete cosine or wavelets [20] whose components are vectorized
as dictionary atoms. The created dictionary remains fixed and is used uni-
versally for the representation of all signal types. Picking a dictionary and
using it ubiquitously will be very efficient for certain classes of signals, but
also quite disappointing for others.

A different approach uses pre-designed, but still fixed, dictionaries that
are used only for specific classes of signals. Such tuned dictionaries can be
built using something like wavelet packets [21], bandlets [22], curvelets [23]
or contourlet [24]. While this loses the generality of the former universal
approach it provides substantially better representations. Even so, when we
are provided with such a dictionary, we can still obtain mediocre results on
our signal sets due to D being too specialized or too general.
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Algorithm 1: Dictionary learning – general structure

1 Arguments: signal matrix Y , target sparsity s
2 Initialize: dictionary D (with normalized atoms)
3 for k = 1, 2, . . . do
4 With fixed D, compute sparse representations X
5 With fixed X, update atoms dj, j = 1 : n

2.4 Learning

The shortcomings of the above methods have paved the way for a third
versatile approach called dictionary learning (DL) [25,26]. The central idea in
DL is to first train a specific dictionary on a relevant training set until a well-
suited specialized final dictionary is obtained that can be used in fixed form
to perform efficient representations of other signal sets of the same class. This
strategy has been shown [27] to be very well suited for sparse representations
and our study will gravitate around this approach when investigating and
proposing new dictionary designs methods.

Formally, the DL problem is posed as follows. Given a data set Y ∈ Rp×m,
made of m vectors (signals or data items) of size p, and a sparsity level s,
the aim is to solve the optimization problem

minimize
D,X

‖Y −DX‖2F
subject to ‖xi‖0 ≤ s, 1 ≤ i ≤ m,

(2.8)

where the variables are the atoms of dictionary D ∈ Rp×n, and the sparse
representations matrix X ∈ Rn×m, whose columns have at most s nonzero
elements. By xi we denote the i-th column of the matrix X and by ‖ · ‖F
the Frobenius norm of a matrix. In practice, the dictionary D is initialized
either randomly or by a random selection of signal vectors. The norm of the
atoms is forced to 1 at all stages, in order to eliminate the multiplicative
indeterminacy in the product DX.

Algorithm 1 presents the general structure of most DL algorithms. First,
a sparse representation algorithm (see Chapter 4) is used to compute the
sparse representation matrix X. Note that the problem can be decoupled,
since each column of X can be computed separately by attempting to find
a sparse solution through least-squares (LS) Dxi = yi, for i = 1 : m. Then,
the atoms are updated using different methods (see Chapter 5), all aiming
to reduce the objective of (2.8).

Among the existing dictionary design algorithms that attempt to solve



24 CHAPTER 2. DICTIONARY LEARNING

problem (2.8) we mention method of optimal directions (MOD) [28], K-
SVD [29], approximate K-SVD (AK-SVD) [30], sequential generalization
of K-means (SGK) [31], new SGK (NSGK) [32], union of orthonormal ba-
sis(UONB) [33], and single block orthogonal algorithm (SBO) [34] which we
discuss in Chapters 5 and 7. Our research proposes parallel alternatives for
most of the above algorithms and provides a new parallel DL framework
called Jacobi Atom Updates (JAU).

2.5 Experiments

We tested the performance of the DL methods for two standard problems:
recovery of a given dictionary and dictionary training for sparse image rep-
resentation.

2.5.1 Dictionary Recovery

Following the numerical experiments from [31] and [32], when performing
dictionary recovery tests we generate a random dictionary with n = 50 atoms
of size p = 20 each, and a signal set Y of m = 1500 data vectors, each vector
being generated as a linear combination of s ∈ {3, 4, 5} different atoms. We
then add white gaussian noise with SNR levels of 10, 20, 30 and ∞ dB
to the signal set. We apply 9s2 dictionary learning iterations (step 3 in
Algorithm 1) on this signal set for each algorithm and compare the resulting
dictionaries with the original. Following the method from [29], if the scalar
product between two atoms, one from the resulting dictionary and one from
the original dictionary, is larger than 0.99 in absolute value (with 1 being
the maximum value because the atoms are normalized), then the atom is
considered successfully recovered. This verification process can be easily
implemented by processing the correlation matrix between the original and
the trained dictionary. The dictionary is initialized with a random selection
of data vectors. The algorithms are given the fixed sparsity target s that was
used to generate the original signal set. Unless otherwise stated, our results
present percentages of recovered atoms averaged over 50 runs.

2.5.2 Dictionary Training

When generating training signal sets we used colored and gray scale bitmap
images taken from the USC-SIPI [35] image database (e.g. Barbara, Lena,
boat etc.). The images were normalized and split into random 8 × 8 blocks
representing the patches. The initial dictionary was built similarly or by
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generating random atoms; when comparing different algorithms, the initial-
ization was always the same. We compare the resulting sparse image repre-
sentations with the original signals by computing the root mean square error
(RMSE)

RMSE =
‖Y −DX‖F√

pm
. (2.9)
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Chapter 3

Parallelism with OpenCL

Signal processing has been a field of active development for GPU algorithms
and, in the last few years, for OpenCL [36] implementations. The prob-
lems solved in this framework are typical for image or video processing, as
naturally fit for GPUs. There is work on segmentation [37], feature match-
ing [38], motion estimation [39] and real time particle filtering [40], among
others. Also more intensive computation tasks have been tackled, like the
solution of optimization problems (rank minimization) [41]. Closer to our
interest, we see algorithms for computing sparse representations [42].

In this chapter we focus on the details regarding the OpenCL standard
and the hardware using it underneath. This will create the necessary context
in which future chapters describe and analyze various parallel dictionary
learning implementations.

OpenCL is an open standard allowing portable parallel programming,
aimed especially at graphics processing units (GPU) but not restrained to
them. Despite its recent proposal, OpenCL has gained support from the in-
dustry and its implementation is supported by the major GPU manufactur-
ers. Although some implementations miss certain features and there are dif-
ficulties in portability [43], there are much more incentives for using OpenCL
than languages specialized to a single type of GPUs.

Despite the fact that its original motivation can be clearly tracked back to
the increasing need for general-purpose programming on graphical processing
units (GPGPU), the standard defines an abstract device type that can be
modeled by other types of hardware like central processing units (CPUs), dig-
ital signal processors (DSPs) and field-programmable gate arrays (FGPAs).

27
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3.1 Hardware Abstraction

3.1.1 Execution

OpenCL abstracts the smallest execution unit available in hardware as pro-
cessing elements (PE), that are organized in equally sized groups at which
parallelism is guaranteed, called compute units (CU), located on the OpenCL
device. Compute units can also be executed in parallel.

Each PE has its own private memory, with no visibility on the outside,
which is the fastest type of memory on the OpenCL device but also the
smallest. PEs share resources locally, within the compute unit, and globally,
on the OpenCL device. The local memory of a CU is visible only to its PEs
and represents the middle-ground between size and latency. All PEs from all
CUs can read from and write to global memory. This is the largest type of
memory but also the slowest. Although optional, on some devices a fraction
of it can be reserved for read-only memory that can be used as a caching
mechanism. The global memory is the only type of memory accessible from
the outside by the host on which the OpenCL device is installed.

In Figure 3.1 we present a theoretical OpenCL device that is composed
of two compute units with four processing elements each. Also visible in
this example are the private memory associated with each PE along with the
local memory of each CU and the device global memory at the bottom.

3.1.2 Scheduling Work

OpenCL does not permit individual PE or CU control. We can not execute
different tasks on different PEs like we do on regular CPUs. Instead, work is
scheduled simultaneous for all PEs across the entire device. Each PE executes
the same task and its work is differentiated in software through indexing as
described in the following subsection. Once the current task is executed by
all PEs a new one can take its place.

If a task consumes too much local or private memory the OpenCL sched-
uler can disable a PE subset from executing in order to accommodate the
resource requirements: if 10 PEs require 10KB of memory and the physical
limit is 5KB, the scheduler could decide to keep 5 PEs active and 5 idle in
order to fit all the data in memory.

The standard allows the task to request a number of individual processing
items called work-items that are all guaranteed to be executed on the device’s
PEs, but the parallelism is left up to the scheduler. The task can group work-
items into work-groups. The work-items within one work-group are executed
by the PEs from a single compute unit.
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Figure 3.1: OpenCL hardware abstraction.

The way a task splits work has a direct impact on the scheduler and its
ability to execute work-items and work-groups in parallel.

3.1.3 Topology

Work-items consist of identical small functions (also called kernels) and are
organized in an n-dimensional space that is defined in software by the ap-
plication. This logical split allows to differentiate work among work-items
through indexing: each work-item has a global unique ID and a local ID
unique within the compute unit. The chosen dimension creates a tuple of
cartesian coordinates that define each of these global and local IDs. OpenCL
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currently allows no more than 3 dimensional spaces to be defined.
For a bidimensional split of the PE set, we can denote the n-dimensional

range definition as NDR(〈Gx, Gy〉, 〈Lx, Ly〉). There are Gx ×Gy PEs, orga-
nized in work-groups of size Lx × Ly, running the same kernel.

No matter of the defined NDR, all work-groups have an identical number
of work-items and the local work-group dimensions have to fit perfectly within
the global dimensions. If we note with Wx and Wy the number of work-groups
in each dimension from our 2D example, then the following relationship holds:

Lx = Gx/Wx

Ly = Gy/Wy.
(3.1)

Through the relation between these dimensions we can also find out the
global ID of an work-item from its local ID:

gx = wx ∗ Lx + lx

gy = wy ∗ Ly + ly,
(3.2)

where gx,y is the work-item global ID, wx,y is the work-group ID and lx,y is
the work-item local ID. And vice-versa, we can find out the work-group ID
and the local work-item ID just from its global ID:

wx = gx/Lx

wy = gy/Ly

lx = gx%Lx

ly = gy%Ly.

(3.3)

Figure 3.2 presents a 2D NDR example that helps visualizing the dimen-
sions and indexing process described above. There, we organized a total of 8
work-groups, each with 16 work-items, in 2 rows and 4 columns: NDR(〈16, 8〉,
〈4, 4〉).

In this thesis we focus on GPU implementations of our methods, but we
note that our solutions can be applied on any multicore setup (including
regular CPUs and FPGAs) that adheres to the OpenCL standard.

3.2 GPU Particularities

While GPUs are able to successfully model the abstract device from Figure
3.1 the hardware underneath is usually quite different and knowing a bit
about its particularities helps us design efficient kernels.
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Gy = 8
Wy = 2

Gx = 16 Wx = 4

Lx = 4

Ly = 4

gx,y = {5, 1}, lx,y = {1, 1}

wx = 2
wy = 1

Figure 3.2: 2-dimensional split example where indexing starts from 0

Memory. GPUs have a much smaller memory when compared to CPUs
and their processing elements operate at lower frequencies. Private memory
is represented by register memory on CPUs, but on GPUs it can be incor-
porated in a dedicated memory bank on each CU or it might also be absent.
GPU register memory is built from the set of vector general purpose regis-
ters (VGPRs). OpenCL local memory is implemented in some GPUs [44] by
on-chip local data store (LDS) and on CPUs through cache or a dedicated
memory range from random-access memory (RAM). Global memory is built
from RAM chips on both GPUs and CPUs.

Work. A compute unit on the GPU is composed of one or more wave-
fronts [44]. Wavefront is the smallest grouping at which parallelism takes
place. The processing elements from a wavefront execute each instruction
from an OpenCL kernel at once by locking on to the instruction pointer: a
kernel instruction is processed by all elements and when the last PE finishes
execution the entire wavefront moves on to the next instruction. The size of
a wavefront is hardware specific. Wavefronts are sometimes also referred to
as waves.

Synchronization. Work-groups are further split into work-item groups the
size of a wavefront. Work-items from different wavefronts can be synchro-
nized through the use of memory barriers. Barriers ensure memory consis-
tency by stopping execution of the work-items reaching it until all of them
do and waiting for all local or global memory writes to settle. Within a
wavefront, divergent paths (such as if-else branches) are synchronized by
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concatenating all possible paths and forcing every work-item to run every
instruction from this reunion. This ensures lock-step instruction execution
within the wavefront and the hardware takes care of the side-effects gen-
erated by this approach. This divergence cost can be minimized through
special OpenCL instructions such as select that can replace if-else blocks.

3.3 Performance and Occupancy

The main goal when designing an OpenCL kernel is performance through
parallelism. When the target is a GPU device, this often implies ensuring
full resource occupancy. In other words we need to make sure that all the
PEs are actively processing at any given time during the execution of our
kernel.

There are of course corner cases where the best performance does not
imply full occupancy like when the time cost of transferring data from the
host to the OpenCL device or from global to local memory is higher than
the actual execution time.

A strategy for minimizing the memory input-output (I/O) impact on
performance is hiding the I/O costs by scheduling more work-groups than
the available CUs in order to increase the chances of replacing one work-
group waiting on I/O with another that is ready for execution. Thus the
n-dimensional split that we choose for our kernels is tightly coupled with the
I/O we need to do. The bigger the global work size (GWS) is compared to
the local work size (LWS) the more work-groups we have.

The NDR needs to also take into account the wavefront size when it
defines the local work size because, as described in the last section, wavefronts
split work-groups for parallel execution and if the work-group size (or LWS)
is not an integer multiple of the wavefront size, some PEs might be forced to
remain idle for padding during execution. In this scenario device occupancy
would be suboptimal.

Even with a properly defined NDR, high memory requirements might
force the GPU to schedule less work (see Section 3.1.2). Having too many
data-structures shared among PEs in local memory (or LDS) will lead to
fewer active wavefronts within a CU. Abuse of auxiliary variables or improper
floating-point vectorization can lead to VGPR starvation which, in turn,
limits the total number of active PEs due to private memory depletion.

Figure 3.3 presents the occupancy analysis of our matrix multiplication
kernel generated by CodeXL 1. In the left panel we can see how work-group

1We used CodeXL version 1.7 available at http://developer.amd.com/

tools-and-sdks/opencl-zone/codexl/
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Figure 3.3: Matrix multiplication kernel occupancy

size influences the total number of active wavefronts. The orange dot indi-
cates our current setting. The next two panels focus on the usage of private
and, respectively, local memory of our kernel. We can see that the number
of used VGPRs (middle) has a more drastic effect on the number of active
waves than the amount of used LDS (right).

3.4 Experiments

We tested our OpenCL implementations on an ATI FirePro V8800 (FireGL
V) card from AMD, running at a maximum clock frequency of 825MHz, hav-
ing 1600 streaming processors, 2GB global memory and 32KB local memory.
Also, the CPU tests for our C implementations were made on an Intel i7-
3930K CPU running at a maximum clock frequency of 3.2GHz.

As a rule, we chose data dimensions as powers of two because this way
the data objects and the work-loads are easier divided and mapped across
the NDRs without the need for padding.

3.5 Conclusions

In this chapter we briefly described the OpenCL device as abstracted by
the standard and how execution units can be organized as an n-dimensional
space. We also detailed how GPUs model this abstract device and the hard-
ware used to build the different types of memory. Lastly, we presented the
main factors that influence the design and efficiency of OpenCL kernels and
their execution. In the following chapters we will use these concepts to mo-
tivate and describe our dictionary learning implementations.
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Part II

General Dictionary Learning
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Chapter 4

Sparse Representations

4.1 Introduction

When looking at the sparse representation problem we are interested in find-
ing the representation with the largest number of zeros in its support that
uses a known fixed dictionary to represent a given full signal. This can be
formalized as the following optimization problem

minimize
x

‖x‖0
subject to y = Dx,

(4.1)

where y is the signal, D the dictionary, and x the resulting sparse represen-
tation. This is a hard problem and most of the existing methods propose an
alternative to (4.1) by approximating y following a sparsity constraint s:

minimize
x

‖y −Dx‖22
subject to ‖x‖0 ≤ s

(4.2)

or an error threshold ε:

minimize
x

‖x‖0
subject to ‖y −Dx‖22 ≤ ε.

(4.3)

In all of the above formulations we can split the pursuit of x in two
parts: finding the best few columns from D, to be used as the support of
x, and then filling its non-zero entries with the coefficients found through
least-squares (LS). Denoting I as the support set and DI the restriction of
D to the columns belonging to I, we can compute the representation as

xI = (DT
IDI)

−1DT
I y, (4.4)

37
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where xI are the coefficients corresponding to the current support and thus
the other elements of x are zero. We can reason that because the support I is
limited to a few entries, the algorithms that construct it will have a reasonable
execution time which probably explains why most of the proposed solutions
from the field approach the problem through greedy methods.

The popular dictionary design algorithms that we will present in Chapter
5 (MOD [28], K-SVD [29], AK-SVD [30], SGK [31], NSGK [32]) use Orthog-
onal Matching Pursuit (OMP) [45] in the first stage to compute the sparse
representations. The main reason is that OMP is fast and also that it is
used in applications together with the optimized dictionary; it makes sense
to appeal to the same representation algorithm in training the dictionary as
well as in using it. However, there are other greedy algorithms, like Orthogo-
nal Least Squares (OLS) [46], Subspace Pursuit [47], Projection-Based OMP
(POMP) or Look-Ahead OLS (LAOLS) [48], that are still fast enough for
wide practical use, but achieving typically better representations than OMP.
OLS can be implemented efficiently as an orthogonal triangularization with
pivoting, while POMP and LAOLS are able to trade off complexity and rep-
resentation error. Besides the greedy category, the class of Basis Pursuit
algorithms [1] offers a number of algorithms with very good representation
error, but much slower than OMP and its improved versions.

Our first contribution here is an empirical investigation of the impact
that the sparse representation algorithm has in DL. The spark to start this
study was the somewhat disconcerting fact that, in the dictionary recovery
test problem (see Section 2.5.1), often used in the DL community, several
algorithms gave quite similar result. The immediate but apparently ignored
question is if OMP is the bottleneck of DL algorithms and thus progress
in dictionary design might be masked by it. Would better representation
algorithms allow to discern which atom update method is in fact superior ?
Would better representation algorithms cause a significant decrease of the
overall error in the DL problem (2.8) ? Although we cannot provide definitive
answers, we try at least to gain more insight into the DL process and assess
DL algorithms on a steadier ground.

The second contribution is orientated towards the technical details of effi-
ciently implementing the representation algorithms for heterogeneous parallel
systems. Here we present in detail a case-study of the OpenCL implementa-
tion of OMP and then proceed to show and discuss the obtained numerical
results and their associated running times when executing on a multiproces-
sor graphical device unit.

The chapter is structured as follows. In Section 4.2 we review several
greedy representation algorithms that are good candidates to replace OMP.
Among them, there is a new proposal, Projection-Based OLS (POLS), natu-
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rally derived from POMP. Section 4.3 focuses on parallelizing the algorithms
and presents an in-depth analysis of the OMP implementation for the GPU.
We close up by presenting the slower but better performing alternatives to
the greedy approach in Section 4.4.

4.2 Greedy Minimizations

For the sake of completeness, we review here the considered sparse representa-
tion algorithms, although without giving all the implementation details. We
will assume that a generic function is available for finding the least-squares
solution (4.4) to the system AIxI = b with known support I and denote its
use by

x = LS(A, b, I). (4.5)

Since in greedy algorithms the support usually grows on the current one,
this function could be implemented efficiently by using an orthogonal partial
triangularization of A or a partial Cholesky factorization of the associated
normal matrix ATA. However, we will leave these details out of the presen-
tation and give only the main ideas of the methods.

Orthogonal Matching Pursuit (OMP) [45], presented in Algorithm 2,
grows the support by looking at the correlations of the matrix columns
(atoms) with the current residual and adding the index of the largest corre-
lation to the support; this is traditionally called matching pursuit criterion.
Then, it computes the LS solution for the current support and updates the
corresponding residual, thus preparing the next iteration. The residual is or-
thogonal on the selected columns, hence a column cannot be twice selected.
(This is also the reason for the word ”orthogonal” in OMP.) The interpre-
tation of the selection criterion is simple: the new column is the one that
decreases the most the residual norm, keeping fixed the values of the current
solution xI .

Orthogonal Least Squares (OLS) [46] takes a slightly different approach.
The next column is the one that, together with the previous ones, gives a so-
lution that minimizes the residual norm; hence, the elements of xI can change
during the selection process. Algorithm 3 describes OLS. It can be efficiently
implemented as an orthogonal triangularization with pivoting, which perma-
nently orthogonalizes the not selected columns on the selected ones. This
allows the computation of the selection criterion as a simple matrix-vector
multiplication. In average, OLS is slightly better than OMP.

A refinement of OMP was proposed in [48], in the form of Projection-
Based OMP (POMP), presented in Algorithm 4. Unlike OMP, a number of
L candidate columns are selected via the matching pursuit criterion, where
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Algorithm 2: Orthogonal Matching Pursuit (OMP)

1 Arguments: A, b, s
2 Initialize: r = b, I = ∅
3 for k = 1 : s do
4 Compute correlations with residual: z = AT r
5 Select new column: i = arg maxj |zj|
6 Increase support: I ← I ∪ {i}
7 Compute new solution: x = LS(A, b, I)
8 Update residual: r = b− AIxI

Algorithm 3: Orthogonal Least Squares (OLS)

1 Arguments: A, b, s
2 Initialize: I = ∅
3 for k = 1 : s do
4 for j 6∈ I do
5 Build new support: J = I ∪ {j}
6 Try solution: x = LS(A, b,J )
7 Residual norm: ρj = ‖b− AJxJ ‖2

8 Select new column: i = arg minj ρj
9 Increase support: I ← I ∪ {i}

10 Compute new solution: x = LS(A, b, I)

L is an argument of the algorithm. Then, an LS solution is computed for
the support extended with all these columns. The winner is the column with
the largest element of the solution. This approach is partly inspired from
Subspace Pursuit [47], where selection is made by attempting to find LS
solutions with larger support and looking at the magnitude of the solution
elements: a large magnitude means a higher likelihood that the position
belongs to the true support. It is clear that POMP with L = 1 is identical to
OMP. Also, it is not necessarily true that POMP with L > 1 gives a better
result than OMP, although this is usually the case.

An immediate extension, not investigated until now, is the Projection-
Based OLS (POLS), presented in Algorithm 5, which is the application of
the POMP selection idea in the context of OLS. Of course, for L = 1 POLS
is identical to OLS. The performance of POLS with respect to POMP should
be similar to that of OLS with respect to OMP, but we will be able to say
more in the numerical experiments section.
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Algorithm 4: Projection-Based Orthogonal Matching Pursuit
(POMP)

1 Arguments: A, b, s, L
2 Initialize: r = b, I = ∅
3 for k = 1 : s do
4 Compute correlations with residual: z = AT r
5 Select indices J of L largest |zj|
6 Compute potential solution: x = LS(A, b, I ∪ J )
7 Select largest element index: i = arg maxj∈J |xj|
8 Increase support: I ← I ∪ {i}
9 Compute new solution: x = LS(A, b, I)

10 Update residual: r = b− AIxI

Algorithm 5: Projection-Based Orthogonal Least Squares (POLS)

1 Arguments: A, b, s, L
2 Initialize: I = ∅
3 for k = 1 : s do
4 Compute values ρj like in steps 4–7 of OLS
5 Select indices J of L largest ρj
6 Apply steps 6–9 of POMP

The last sparse representation algorithm that we use is Look-Ahead OLS
(LAOLS), given in Algorithm 6. Like in POMP, L indices are selected at each
iteration via the matching pursuit criterion. After appending each of these
indices to the current support, OMP is run starting from this support to the
completion of an s-sparse solution. The newly selected index is that giving
the lowest residual for the final OMP solution. So, a look-ahead search is
performed for each index selection. We note that in fact the proper name of
this algorithm would be LAOMP, since OMP is run in step 7 in the selection
process. An OLS version is easy to derive by replacing step 4 with steps
4–7 of OLS and using OLS instead of OMP in step 7. However, we did not
pursue the investigation of such an algorithm due to the higher complexity
of LAOLS with respect to the other presented algorithms.

Although we have mentioned Subspace Pursuit [47], we skip its presenta-
tion due to the poor results obtained in dictionary learning and we will not
report any experiments with it.

Algorithm complexity. The significant instructions from an OMP iteration
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Algorithm 6: Look-Ahead Orthogonal Least Squares (LAOLS)

1 Arguments: A, b, s, L
2 Initialize: r = b, I = ∅
3 for k = 1 : s do
4 Compute correlations with residual: z = AT r
5 Select indices J of L largest |zj|
6 for j ∈ J do
7 Run OMP starting from I ∪ {j}, obtaining x
8 Compute residual norm ρj = ‖b− Ax‖2

9 Select new column: i = arg minj ρj
10 Increase support: I ← I ∪ {i}
11 Compute new solution: x = LS(A, b, I)

and their complexities are: the correlations in step 4, O(pn), the least squares
computation from step 7 (which we assume to be incrementally computed for
each new column), O(sp), and the residual update, O(sp). For s iterations,
this amounts to a total complexity of O(spn+s2p). POMP performs an extra
LS operation in step 6 on the support and its L-sized extension J . This
amounts to L incremental LS calculations at each iteration, which results in
a total O(sL(s+L)p) extra cost compared to plain OMP. If L = O(s), then
the extra cost is O(s3p).

An efficient implementation of OLS consists of two intensive tasks: selec-
tion via correlations (similar to OMP), O(spn) and performing the transfor-
mations needed by the partial orthogonal triangularization, O(spn). Even
though OLS has a similar theoretical complexity as OMP, it is slower by a
constant factor, due to a larger constant multiplying the complexity term
spn. POLS adds a single computationally significant instruction to OLS
which is, again, the LS on the extended support, that was shown earlier to
total to an extra cost of O(sL(s+ L)p).

The increase in complexity for POMP and POLS with respect to OMP
and OLS is negligible for small s, but becomes significant when s2 > n. (We
assume that L ≤ s, which is a good practical choice.)

While the fastest option for representation remains OMP, POLS (and the
other alternatives) are still a good candidate for DL, where execution time
is not critical and representation error is important. For a more in-depth
comparison and analysis of the algorithmic complexity we refer the reader to
Table I and Section V from [48].
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Algorithm 7: Batch OMP

1 Arguments: α0 = DTy, G = DTD, sparse goal s
2 Initilize: α = α0, I = ∅, L = 1
3 for k = 1 : s do
4 Select new column: i = arg maxj |αj|
5 Increase support: I ← I ∪ {i}
6 if k > 1 then
7 Solve for w {Lw = GI,s}

8 L =

(
L 0

wT
√

1− wTw

)
9 Compute new xI solution: LLTxI = α0

I

10 Update: α = α0 −GIxI

4.3 Parallelism

The dictionary learning process, as described in Chapter 2, operates on large
training signals sets that need to be sparsely represented. And so, following
the equations from either (4.2) or (4.3), the first stage of the dictionary
learning process is naturally parallel, since the signal representations are
completely independent. Given that this applies to all algorithms described
in Section 4.2, we picked OMP as a case-study as it is the popular choice in
the literature. In the following subsections we will present the details of the
OMP algorithm and describe its parallel OpenCL implementation.

4.3.1 Orthogonal Matching Pursuit

In our implementation we followed the Batch OMP (BOMP) algorithm vari-
ant described in [30]. The steps from Algorithm 7 present the operations
necessary for performing sparse representation for one signal y. The authors
of [30] show that the best time performance is obtained if we first precom-
pute the scalar products between the atoms and themselves and between the
atoms and the signal vectors (step 1). Since these are matrix multiplications
of fairly large size, they can be easily parallelized. The selection of columns
is made by the standard matching pursuit criterion in step 4. Then, the algo-
rithm builds the Cholesky decomposition of the matrix of the normal system
associated with the sparse least-squares problem (steps 6–8) and computes
the new representation by solving it in step 9. The residual update is no
longer necessary and can be replaced by the expression from step 10 (as ex-
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Figure 4.1: BOMP

plained in [30]) which has a lower computation complexity. We compute the
sparse representations in parallel for groups of m̃ signals.

4.3.2 OpenCL Implementation

The matrix precomputations needed by BOMP were performed by a dedi-
cated BLAS kernel that implements block matrix multiplication. Since the
two multiplications are independent of each other, they can be also performed
in parallel. We depict these operations in the first part of Figure 4.1 where
each grid represent one BLAS operation and each grid element represents a
block matrix multiplication.

We keep the input and resulting matrix in global memory. Each work-
group performs the operations required for calculating one block from the
result matrix. We organized the PEs in a 2-dimensional space that is further
split into 2-dimensional block-size dependent work-groups. Full resource oc-
cupancy of our GPU (an indicator of maximum performance) was achieved
when using work-groups of 16× 16 PEs. Thus for a result matrix A ∈ Rn×m

we defined our n-dimensional space as: NDR(〈n,m〉, 〈16, 16〉). Before doing
the actual multiplication, each work-item within a work-group copies a few
elements from the input block sub-matrices into vectorized variables in local
memory. On our device, the fastest vectorized type was float4.

All the operations required for the sparse representation of a single signal,
were packed in and implemented by a single OpenCL kernel.

The input matrices as well as the resulting sparse signal are kept in global
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memory. The BLAS operations required for performing the Cholesky update
and for recalculating the residual are done sequentially inside the BOMP
kernel, not through a separate call to the BLAS kernel. Due to the rather
small size of the matrices involved in these operations, measurements showed
that using a dedicated kernel (as for precomputing the matrices from step 1)
does not even begin to pay for the required GPU I/O. In-lining proved to be
a lot faster.

The main obstacles we encountered during the implementation were mem-
ory bound. BOMP is a huge memory consumer and mostly due to auxiliary
data. The necessary memory is of size O(ns). Keeping all the auxiliary data
in local memory would permit only the processing of one signal per compute-
unit, corresponding to an NDR(〈m̃〉, 〈1〉) splitting. This would be wasteful
as it would not reach full GPU occupancy and thus it would not cover the
global memory latency costs.

After trying several work-group sizes, like 64, 128 and 256, we decided to
leave the decision to the GPU scheduler, by using NDR(〈m̃〉, 〈any〉). This
solution appears the best in our case. We took m̃ = m.

This is a compromise between leaving full decision to the GPU scheduler
(when m̃ = m) and a tight control of the parallelism (when m̃ is small, for
example equal to the number of compute units). However, we did not notice
significant differences between values from 1024 to m.

Table 4.1 and Figure 4.2 provide a more in-depth analysis of this fact.
The table is split in two parts with each column representing the results for
different m̃ values starting from 1024 all the way to m̃ = m. The first part
shows the VGPR usage per work-item, the LDS usage per work-group, the
flattened work-group size, the flattened global work size, and the number of
waves per work-group, respectively for each kernel. The second part shows
how resource utilization limits the number active waves; the resulting device
occupancy is shown last. Our kernel is marked with a squared dot on the
graphs from figure 4.2 where we can see how resources limit the number
of active wavefronts. We can see that the limiting factor is the number of
VGPRs used and that changing the m̃ signal grouping brings no change in
this value. More so, Table 4.1 shows that varying m̃ indeed does not affect
the kernel occupancy which is always at 67%.

4.3.3 Performance

In this subsection we present the performance of the parallel GPU implemen-
tation of the BOMP algorithm and compare it to an almost identical CPU
version. We were able to keep an almost one-to-one instruction equivalence
due to the fact that the OpenCL langauge is a custom subset of the C lan-
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Figure 4.2: BOMP representation kernel occupancy

Table 4.1: Kernel information and occupancy for m = 8192
Kernel 1024 2048 4096 8192 Limits
VGPRs 15 15 15 15 248

LDS 0 0 0 0 32768
LWS 256 256 256 256 256
GWS 1024 2048 4096 8192 16777216
Waves 4 4 4 4 4

VGPRs 16 16 16 16 24
LDS 24 24 24 24 24
LWS 24 24 24 24 24

Occ.(%) 67 67 67 67 100

guage. We measured the execution times when varying the number of signals
and keeping a fixed dictionary dimension and vice-versa. In both scenarios
we used m̃ = m in the OpenCL implementation.

Figure 4.3 presents the elapsed time when representing a signals set with
a varied size between m = 1024 to m = 10240 with a fixed dictionary of
n = 128 atoms of p = 64 size each and a sparsity goal of s = 8. This
experiment shows a performance improvement of up to 312 times when using
the OpenCL GPU version.

In Figure 4.4 the performance improvement of the GPU implementation
is clearly visible as increasing the dictionary size (n = 64 up to n = 512) has
a direct impact on the number of instructions performed by each work-item.
In our tests we used a fixed number of m = 8192 signals of dimension p = 64
and a target sparsity of s = 8. Here, the GPU version is up to 250 times
faster.
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Figure 4.3: BOMP performance with varied number of signals m

4.4 Relaxation Techniques

In this section we present a few sparsifying methods that take a step back
from the l0 norm and relax the constraint by replacing it with continuous
norms. While the worst-case scenario shows the relaxation techniques to
have a higher succes rate at recovering the sparsest representation when
compared to the greedy methods from Section 4.2, empirical evidence and
average performance analysis show that the two are in fact similar. The
performance guarantee comes with a complexity cost given by the sophisti-
cation required for solving these relaxed optimization problems which makes
the greedy choice more attractive for certain practical applications.

4.4.1 Basis Pursuit

Chen, Donoho and Saunders [49] approach the sparse representation problem
by finding a basis from the dictionary columns that provides the system
solution with the smallest l1 norm. They term this strategy Basis Pursuit
(BP).
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Figure 4.4: BOMP performance with varied number of atoms n

Formally this is expressed as:

minimize
x

‖x‖1
subject to Ax = b,

(4.6)

which is shown to be equivalent to the standard form of the constrained
optimization problem

minimize cTx

subject to Ax = b, x ≥ 0,
(4.7)

that can be solved as a linear programming (LP) problem.
A simplex approach for this LP problem would start with a basis formed

from a linearly independent subset of columns from A which is then itera-
tively improved by performing one column swaps following the anticycling
rules which guarantee convergence. The algorithm stops when no noticeable
error improvement is observed.

Interior-point methods solve this problem by iteratively modifying the co-
efficients from x, while maintaining the constraints, and promoting sparsity.
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The iterations are repeated until a subset of the x’s elements stand-out and
are obviously the ones corresponding to the final sparse solution.

A noise removal variant of the method exists which is termed Basis Pur-
suit Denoising (BPDN). If the known signal b is perturbed by a standard
white Gaussian noise z, with noise level σ, and b0 is the unknown clean
signal

b = b0 + σz, (4.8)

then an exact formulation such as (4.6) is replaced by an approximation

b = Ax+ r, (4.9)

where the residual r matches the noise σz:

b0 ≈ Ax, r ≈ σz. (4.10)

BPDN can then be expressed as

minimize
x

1

2
‖b− Ax‖22 + λ‖x‖1, (4.11)

where the residual size is given by the penalty λ. This problem has been
shown [50] to be equivalent to the following perturbed linear system:

minimize cTx+
1

2
‖p‖2

subject to Ax+ δp = b, x ≥ 0, δ = 1,
(4.12)

which, again, can be solved by simplex or interior-point LP methods. The
recommended [49] penalty choice is

λ = σ
√

2 log(n). (4.13)

4.4.2 Focal Underdetermined System Solver

Gorodnitsky and Rao present in their paper [5] an iterative reweighted least
squares based algorithm termed FOCUSS. Their method relaxes the l0 norm
and replaces it with a nicer and continuous weighted l2 approximation.

Given a general underdetrmined linear system of equations

Ax = b, (4.14)

FOCUSS iteratively approximates x by using the technique of Affine Scaling
Transformations (AST) [51]. Applying AST at iteration k, we express the
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current approximation xk as a weighted factorization of the solutions from
past iterations

xk = Xk−1q, (4.15)

where Xk−1 is a diagonal matrix built from the elements of the solution given
by the previous iteration. This transformation leads to an l2 optimization
problem in q = X+

k−1xk:

minimize
xk

‖X+
k−1xk‖22

subject to Axk = b.
(4.16)

Sparsity is promoted at each iteration due to the ratio

‖q‖22 = ‖X+
k−1xk‖22 =

p∑
i=1

xk(i)

xk−1(i)
, (4.17)

which encourages larger values for the entries in xk corresponding to the
columns in A that fit b best and at the same time reduces the others until
they asymptotically reach 0.

The minimization in (4.16) can be solved through Lagrange multipliers
as follows:

L(x) = ‖X+
k−1xk‖22 + λT (b− Ax)

⇒ ∂L(x)

∂x
= 2(X+

k−1)
2xk − ATλ

∂L(x)

∂x
= 0⇔ xk =

1

2
X2
k−1A

Tλ.

(4.18)

The penalty is obtained by plugging xk back into (4.14):

A

(
1

2
X2
k−1A

Tλ

)
= b

⇒ λ = 2(AX2
k−1A

T )+b.

(4.19)

Finally, xk can be formulated as:

xk = X2
k−1A

T (AX2
k−1A

T )+b. (4.20)

Algorithm 8 puts these results together and presents the final form of the
FOCUSS technique. Given a dictionary A with n atoms, the signal b and
an approximation threshold ε (step 1), the algorithm initializes the weights
with the unit matrix in step 2 and then proceeds with the iterations in step
3. Because the method iteratively zeros the non-essential elements of x, we
note that it is important to start with all the entries set to non-zero values
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Algorithm 8: FOCUSS

1 Arguments: A ∈ Rp×n, b ∈ Rn, approximation error ε
2 Initilize: X0 = In
3 for k = 1 :∞ do
4 Compute new solution: xk = X2

k−1A
T (AX2

k−1A
T )+b

5 Update: Xk = diag(xk)
6 Stop if: ‖xk − xk−1‖2 < ε

so that the zeroing is left entirely to the algorithm. That is why we choose
the unit matrix as the initial value of X0 (in which case the solution is the
same as with LS), but in fact any full-rank diagonal matrix would have been
good. A FOCUSS iteration starts with solving Equation (4.20) from step 4,
updating the weights with the new solution xk (step 5) and checking to see
if the improvement is sufficient to justify a new iteration (step 6).

The stopping criterion is sufficient because the solutions sequence {xk}∞k=0

converges [5] to a fixed-point no matter of the initialization choice x0. More
so, the convergence follows the descent function

L(x) = Πp
i=1|xk(i)|. (4.21)

We note that even though convergence is guaranteed, the fixed point that
will be reached is not guaranteed to be the best in approximating the global
minimum.

4.5 Conclusions

In this chapter we presented multiple l0 representation methods and pro-
posed a new one, POLS, as a viable candidate for substituting the ubiquitous
OMP. To that end we also provided an in-depth case study of the parallel
implementation of the OMP algorithm and its efficiency when executing on
a multiprocessor GPU. Lastly, we provided an overview of the existing alter-
natives to the fast greedy approach which relax the l0 norm in favour of the
convex and continuous l1 or even of the l2 norm. While these offer tempting
worst-case scenario performance guarantees, average performance analysis
and experiments have shown that the average result of the two approaches
are about the same. In Chapter 6 we will see the effects of combining several
sparse representation and atom update methods for solving the problem of
overcomplete dictionary design and we will show the beneficial effects of mix-
ing POLS with OMP in the tightly coupled process of learning a dictionary
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and then using it for representing new signals.



Chapter 5

Dictionary Design

Given a set of signals Y ∈ Rp×m and a sparsity level s, the goal is to find a dic-
tionary D ∈ Rp×n that minimizes the Frobenius norm of the approximation
error

E = Y −DX, (5.1)

where X ∈ Rn×m is the associated s-sparse representations matrix, with at
most s nonzero elements on each column. This is the dictionary learning
problem from Equation (2.8) with known sparse representations.

5.1 Atom update methods

The general structure of most DL algorithms was presented and described
around Algorithm 1 from Chapter 2. The iterative process is composed of the
two main stages depicted by steps 4 and 5 in the algorithm. In this section
we will present several techniques for updating atom dj in step 5. We denote
Ij the set of the indices of nonzero elements on the j-th row of X. Otherwise
said, these are the indices of the signals whose representation involves the
atom dj.

K-SVD [29] solves the optimization problem

min
dj ,Xj,Ij

∥∥∥∥∥
(
YJ −

∑
6̀=j

d`X`,I`

)
− djXj,Ij

∥∥∥∥∥
2

F

, (5.2)

where all atoms excepting dj are fixed. Note that the matrix within paren-
thesis is the representation error of the dictionary without the atom dj. To
minimize the error, the problem (5.2) is seen as a rank-1 approximation of
this modified error matrix. The solution is given by the singular vectors
corresponding to the largest singular value. The less complex AK-SVD [30]

53
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runs a single iteration of the power method to compute the two vectors. Note
that (5.2) allows the representations to be changed also in this stage.

SGK [31] considers the same optimization problem, but only with dj as
variable:

min
dj

∥∥∥∥∥
(
YJ −

∑
`6=j

d`X`,I`

)
− djXj,Ij

∥∥∥∥∥
2

F

. (5.3)

This is a simple least-squares problem, for which an explicit solution can be
easily computed. NSGK [32] operates similarly, but using differences with
the previous values of the dictionary and representations.

5.2 Jacobi Atom Updates Stategy

All the algorithms from Section 5.1 update the atoms sequentially, using thus
their most recent values when updating another atom. This is the typical
Gauss-Seidel approach. We investigate here the Jacobi version, in which the
atoms are updated independently, meaning that problems like (5.2) or (5.3)
are solved simultaneously for j = 1 : n. Jacobi atom updates (JAU) can be
applied to all presented dictionary update algorithms. We append the initial
P (from parallel) to their name to denote the Jacobi versions.

The general form of the proposed dictionary learning method with Jacobi
atom updates is presented in Algorithm 9. At iteration k of the DL method,
the two usual stages are performed. In step 1, the current dictionary D(k)

and the signals Y are used to find the sparse representation matrix X(k) with
s nonzero elements on each column; we used OMP, as widely done in the
literature.

The atom update stage takes place in groups of ñ atoms. We assume that
ñ divides n only for the simplicity of description, but this is not a mandatory
condition. Steps 2 and 3 of Algorithm 9 perform a full sweep of the atoms.
All the ñ atoms from the same group are updated independently (step 4),
using one of the various available rules; some of them will be discussed in
the next section. Once a group is processed, its updated atoms are used for
updating the other atoms; so, atom d

(k+1)
j (column j of D(k+1)) is computed

in step 4 using d
(k+1)
i if

b(i− 1)/ñc < b(j − 1)/ñc, (5.4)

i.e. i < j and di not in the same group as dj, and d
(k)
i otherwise.

Putting ñ = 1 gives the usual sequential Gauss-Seidel form. Taking ñ = n
leads to a fully parallel update, i.e. the form that is typically labeled with
Jacobi’s name.
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Algorithm 9: General structure of a DL-JAU iteration

Data: current dictionary D(k) ∈ Rp×n

signals set Y ∈ Rp×m

number of parallel atoms ñ
Result: next dictionary D(k+1)

1 Compute s-sparse representations X(k) ∈ Rn×m such that

Y ≈ D(k)X(k)

2 for ` = 1 to n/ñ do
3 for j = (`− 1)ñ+ 1 to `ñ, in parallel do

4 Compute d
(k+1)
j

5 Update d
(k+1)
j ← αd

(k+1)
j + (1− α)d

(k)
j

6 Normalize: d
(k+1)
j ← d

(k+1)
j /‖d(k+1)

j ‖

We also propose (step 5) to update an atom via a convex combination
of its new and former value, with a weight α ∈ (0, 1]. The choice α = 1
was always used until now, which is meaningful for the sequential approach,
where we seek the optimal value of an atom, given all the others. In a parallel
context, where a group of atoms are optimized simultaneously, it may be wise
to temper their progress, since their independent evolution may overreach the
target. Finally, step 6 is the usual normalization constraint on the dictionary.

The proposed form has obvious potential for a smaller execution time on
a parallel architecture. We touch this issue in Section 5.3 where we present
a case-study of a GPU implementation of the AK-SVD algorithm (also pub-
lished in [52]). Here, we will focus solely on the quality of the designed
dictionary.

5.2.1 Particular Forms of the Algorithm

Typically, the atom update problem is posed as follows. We have the dic-
tionary, denoted generically D, and the associated representations matrix X
and we want to optimize atom dj. In the DL context, at iteration k of the
learning process, the dictionary is made of atoms from D(k) and D(k+1), as
explained by the phrase around Equation (5.4). We denote Ij the (column)
indices of the signals that use dj in their representation, i.e. the indices of
the nonzero elements on the j-th row of X. Excluding atom dj, the repre-
sentation error matrix (5.1), reduced to the relevant columns, becomes

F = EIj + djxj,Ij . (5.5)
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The updated atom dj is the solution of the optimization problem

min
t∈Rp

‖F − t xj,Ij‖2F , (5.6)

which is a rewrite of Equation (5.3) in terms of matrix F . The norm con-
straint ‖t‖2 = 1 is usually imposed after solving the optimization problem.

AK-SVD. The K-SVD algorithm and its approximate version AK-SVD
[30] treat (5.6) by considering that xj,Ij is also a variable (as described around
Equation (5.2)). Problem (5.6) becomes a rank-1 approximation problem
that is solved by AK-SVD with a single iteration of the power method (to
avoid ambiguity, we add superscripts representing the iteration number):

d
(k+1)
j = F (x

(k)
j,Ij)

T/‖F (x
(k)
j,Ij)

T‖2
x
(k+1)
j,Ij = F Td

(k+1)
j .

(5.7)

Note that the representations are also changed in the atom update stage,
which is the specific of this approach.

SGK. Dictionary learning for sparse representations as a generalization of
K-Means clustering (SGK) [31] solves directly problem (5.6). This is a least
squares problem whose solution is

d
(k+1)
j = FxTj,Ij/(xj,Ijx

T
j,Ij). (5.8)

The atom updates part of the general JAU scheme from Algorithm 9 has
the form described by Algorithm 10, named P-SGK (with P from Parallel).
The error E is recomputed in step 2 before each group of atom updates, thus
taking into account the updated values of the previous groups. Depending on
the value of ñ, the error can be computed more efficiently via updates to its
previous value instead of a full recomputation. Steps 4 and 5 implement re-
lations (5.5) and (5.8), respectively. Steps 6 and 7, the weighted combination
and the normalization, are identical with those from the general scheme.

To obtain the JAU version of AK-SVD (named PAK-SVD), we replace
step 5 by the operations from (5.7). Note that, for full parallelism (ñ = n) and
no weighting (α = 1), P-SGK and PAK-SVD are identical, since the atoms
produced by (5.7) and (5.8) have the same direction. For full parallelism the
representations updated by PAK-SVD are not used, while if ñ < n, some
updated representations affect the error matrix from step 2. If α < 1, the
weighted combination gives different results, because the updated atom is
also normalized before the combination in PAK-SVD, while in P-SGK only
after the combination.
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Algorithm 10: P-SGK Atom Updates

Data: current dictionary D ∈ Rp×n

signals set Y ∈ Rp×m

sparse representations X ∈ Rn×m

number of parallel atoms ñ
Result: next dictionary D

1 for ` = 1 to n/ñ do
2 E = Y −DX
3 for j = (`− 1)ñ+ 1 to `ñ, in parallel do
4 F = EIj + djxj,Ij
5 t = FxTj,Ij/(xj,Ijx

T
j,Ij)

6 dj ← αt+ (1− α)dj
7 dj ← dj/‖dj‖2

NSGK. The update problem (5.6) is treated in [32] in terms of differences
with respect to the current dictionary and representations, instead of working
directly with D and X:{

D = D(k−1) + (D(k) −D(k−1))

X = X(k−1) + (X(k) −X(k−1)),
(5.9)

where X(k−1) is the sparse representation matrix at the beginning of the k-
iteration of the DL algorithm, while X(k) is the matrix computed in the k-th
iteration (e.g. in step 1 of Algorithm 9).

Applying this idea to SGK, the optimization problem is similar, but with
the signal matrix Y replaced by

Z = Y +D(k)X(k−1) −D(k)X(k). (5.10)

The P-NSGK algorithm (NSGK stands for New SGK, the name used
in [32]) is thus identical with P-SGK, with step 2 modified according to
(5.10). Also, in (5.8), the representations xj,Ij are taken from X(k−1), not

from X(k) as for the other methods.

5.2.2 Numerical Results

We give here numerical evidence supporting the advantages of the JAU
scheme, for dictionary recovery and sparse image representation. We compare
the JAU algorithms PAK-SVD, P-SGK and P-NSGK with their sequential
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counterparts. A notation like P-SGK(α) shows the weight α of the convex
combination from step 5 of Algorithm 9. We report results obtained with the
same input data for all the algorithms; in particular, the initial dictionary is
the same. The sparse representations were computed via OMP1.

Dictionary Recovery

We generate the expermintal data as described in Section 2.5.1 and use full
parallelism for the JAU methods (ñ = n). The percentages of recovered
atoms, averaged over 50 runs, are presented in Table 5.1. (PAK-SVD is not
reported, since it gives the same results as P-SGK.)

We note that, although the JAU algorithms give the best result in 9 out of
the 12 considered problems, the results are rather similar for all algorithms.
(We may infer that, in this problem, the sparse representation stage is the
bottleneck, not the atom update stage.) We can at least conclude that, for
dictionary recovery, the JAU scheme is not worse than the sequential ones.
A weight 0.9 ≤ α < 1 appears to be slightly beneficial.

Dictionary Learning

We generated the training data and the dictionary as described in Section
2.5.2. In a first experiment, we used m = 32768 signals of dimension p = 64
to train dictionaries with n = 512 atoms, with a target sparsity of s = 8. In
Figure 5.1 we can see the evolution of the representation RMSE, averaged
over 10 runs, for the JAU and sequential algorithms. JAU algorithms have
full parallelism (ñ = n) and weight α = 1. (Note that the PAK-SVD and P-
SGK curves are slightly different, due to the computation of the errors at the
end of a DL iteration, where PAK-SVD has different representations; other-
wise, the dictionaries are identical.) Although the sequential algorithms have
smoother convergence, the proposed parallel versions obtain clearly better re-
sults. Among the sequential algorithms, NSGK is the best, confirming the
findings from [32]. However, all parallel algorithms are better than NSGK.

The same conclusion is supported by a second experiment, where the
conditions are similar but, for faster execution, only m = 16384 training
signals were used. Table 5.2 shows the lowest RMSE after i = 200 iterations,
averaged over 10 runs, for three values of the dictionary size n. Weights
α < 1 were also considered. In all cases, the JAU algorithms are clearly the
best. For P-NSGK, the best weight value appears to be between 0.9 and
0.95, as these values are better than no weighting (α = 1). However, P-SGK

1We used OMP-Box version 10 available at http://www.cs.technion.ac.il/

~ronrubin/software.html
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Table 5.1: Percentage of recovered atoms

s Method SNR
10 20 30 ∞

3

NSGK 87.16 90.16 89.32 89.56
P-NSGK(0.8) 84.56 89.84 88.08 89.36
P-NSGK(0.9) 85.00 90.12 89.04 90.56
P-NSGK(0.95) 88.04 90.00 89.12 89.84

P-NSGK 88.36 89.64 89.92 89.76
SGK 87.44 89.40 88.80 90.12

P-SGK(0.8) 85.92 89.68 89.68 89.44
P-SGK(0.9) 86.04 90.12 89.96 89.36
P-SGK(0.95) 87.72 89.24 89.28 89.52

P-SGK 86.48 89.84 89.00 88.24
AK-SVD 86.20 90.00 90.00 88.52

4

NSGK 70.68 91.88 92.16 93.16
P-NSGK(0.8) 62.40 92.28 91.72 92.52
P-NSGK(0.9) 63.92 92.16 92.08 93.16
P-NSGK(0.95) 65.48 92.88 91.60 93.20

P-NSGK 68.08 92.48 92.88 93.28
SGK 67.28 92.16 91.68 91.92

P-SGK(0.8) 67.44 91.56 91.24 92.36
P-SGK(0.9) 65.24 92.68 91.60 92.40
P-SGK(0.95) 65.00 93.04 92.04 91.88

P-SGK 68.28 93.48 91.88 92.56
AK-SVD 70.08 92.76 92.16 92.32

5

NSGK 10.24 92.36 92.72 94.40
P-NSGK(0.8) 4.88 92.28 91.48 93.48
P-NSGK(0.9) 7.80 93.08 92.40 93.36
P-NSGK(0.95) 7.68 93.56 93.56 93.56

P-NSGK 10.60 93.08 93.32 94.72
SGK 11.68 93.28 92.60 93.92

P-SGK(0.8) 6.08 92.88 92.44 93.60
P-SGK(0.9) 8.08 92.56 93.68 93.56
P-SGK(0.95) 6.88 93.20 92.40 95.00

P-SGK 12.04 93.00 92.92 93.92
AK-SVD 11.64 92.72 92.88 94.96
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Figure 5.1: Error evolution for parallel and sequential algorithms.

seems to have less benefits from weighting and taking α = 1 appears the best
option.

To show the influence of the two parameters of the JAU algorithms, the
weight α and the group size ñ, we present the evolution of the error, averaged
over 10 runs, in figures 5.2 and 5.3. We note that the curves for α = 0.9
and α = 1 almost coincide after a sufficiently large number of iterations.
Expectedly, a smaller α offers lower performance.

The effect of group size is less intuitive. Full parallelism (ñ = n) is the
winner, although some smaller values of ñ are good competitors, almost all
being better than the sequential version (ñ = 1). Even though in this example
ñ = 256 is worse than some smaller values, the error usually decreases as ñ
grows, the best value being ñ = n in all our tests, for all parallel methods.
A possible explanation is that the JAU strategy, due to the independent
atom updates, is less prone to get trapped in local minima. Modifying atoms
one by one, although locally optimal, may imply only small modifications of
the atoms; in contrast, JAU appears to be able of larger updates that make
convergence more erratic, but can reach a better dictionary.
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Figure 5.2: P-NSGK error evolution for weigthed atom updates.
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Table 5.2: Best RMSE values after 200 iterations

n = 128 n = 256 n = 512

NSGK 0.0185 0.0168 0.0154

P-NSGK(0.8) 0.0167 0.0154 0.0140

P-NSGK(0.9) 0.0166 0.0153 0.0138

P-NSGK(0.95) 0.0166 0.0153 0.0138

P-NSGK 0.0167 0.0154 0.0139

SGK 0.0201 0.0185 0.0166

P-SGK(0.8) 0.0168 0.0156 0.0145

P-SGK(0.9) 0.0166 0.0153 0.0142

P-SGK(0.95) 0.0166 0.0153 0.0139

P-SGK 0.0165 0.0153 0.0138

AK-SVD 0.0201 0.0184 0.0163

JAU versus MOD

We now compare the performance in representation error of the JAU algo-
rithms with the intrinsically parallel algorithm named method of optimal
directions (MOD) [28]. MOD uses OMP for representation and updates the
dictionary D with the least-squares solution of the linear system DX = Y .
For completeness we also include the sequential versions on which JAU algo-
rithms are built.

In figures 5.4–5.7 we depict the JAU algorithms with green, the sequential
versions with red and MOD with black. All algorithms performed DL for
k = 200 iterations. Each data point from these figures represents an average
of 10 runs of the same algorithm with the same parametrization and data
dimensions but with training sets composed of different image patches.

To see how sparsity influences the end result, Figure 5.4 presents the final
errors for sparsity levels starting from s = 4 up to s = 12 when performing
DL for dictionaries of n = 128 atoms on training sets of size m = 8192. We
notice that for all three algorithms (NSGK, SGK and AK-SVD) the JAU
methods perform similar to MOD at lower sparsity constraints, but as we
pass s = 8 our proposed parallel strategy is clearly better. The sequential
versions always come in last, except perhaps for NSGK that comes close to
MOD past s = 10.

Figure 5.5 presents the final errors for DL on training sets of m = 12288
signals, with a sparsity constraint of s = 12, when varying the total number
of atoms in the dictionary from n = 128 to n = 512 in increments of 64.
Again, the JAU versions are the winners for all three algorithms. Out of the
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sequential algorithms, NSGK is the only one that manages to outperform
MOD, while the others lag behind.

The next experiment investigates the influence of the signal set size on
the final errors. In Figure 5.6 we kept a fixed dictionary size of n = 256
and a sparsity of s = 10 and performed DL starting with training sets of
m = 4096 signals that we increased in increments of 1024 up to m = 16384.
JAU stays ahead of MOD almost everywhere, except for small signal sets
with m < 5000 where the results are similar. The sequential versions are
once again the poorest performers.

Finally, we present in Figure 5.7 the error improvement at each iteration
for all algorithms, for several sparsity levels. In this experiment we used a
dictionary of n = 128 atoms and a training set of m = 8192 signals. We
can see that the JAU versions can jump back and forwards, specially during
the first iterations. We think that this is due to the parallel update of the
dictionary atoms which leads to jumps from one local minima to another
until a stable point is reached. This is, perhaps, the reason why in the end
it manages to provide a lower representation error. Even though the JAU
convergence is not as smooth as MOD or the sequential versions, it has a
consistent descendent trend.

5.3 Parallel Dictionary Learning with OpenCL

In this section we focus on the study of efficient OpenCL implementations
for the dictionary update stages of the AK-SVD, SGK and NSGK methods.
This, together with the parallel results for the sparse representation stage
described in Chapter 4, allows us to perform the entire dictionary learning
process in parallel on the GPU (see Figure 5.8).

The PAK-SVD and the P-SGK kernels are the same until the point where
the atom is updated. At that time P-SGK is done with the update stage
while PAK-SVD has to perform the extra instructions needed for updating
the affected sparse representations as per Equation (5.7). P-NSGK uses the
same atom update kernel as P-SGK with the input error matrix calculated
as E = Z − DX instead of E = Y − DX as explained around Equation
(5.10). The operations described in the following paragraphs are assumed to
be common to all three methods unless explicitly stated otherwise.

5.3.1 OpenCL Implementation Details

Before refining the dictionary we need to compute the error matrix described
in Equation (5.1) and portrayed in step 2 of Algorithm 10. The matrix
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DTD DTY

y1 y2y3 ym. . .

D(k)X(k) D(k)X(k−1)

d1 d2d3 dn

Y −DX

Precompute

BOMP

NSGK

Error matrix

Atom Update

Figure 5.8: Parallel DL: each row is executed simultaneously and each grid
represents an OpenCL kernel whose elements are independent execution
threads.

multiplication needed for the current error is done in the same manner as
the matrix precomputations for BOMP that were described in Section 4.3.
We note that for NSGK two extra BLAS operations are needed in order to
compute the difference based matrix Z as described around equation (5.10).
Matrix Z will replace Y when computing the error matrix E. That is why
in Figure 5.8 the NSGK row precedes the error calculation from the fourth
row.

The atom updating process was implemented through a dedicated OpenCL
kernel. The input matrices E and X are kept in global memory as well as the
existing dictionary D. However, the atom Dj is transferred to private mem-
ory, where it is kept during the update operations. This poses no problem
due to the reasonable problem size (we used p ≤ 64).

On the other hand, storing a list of indices I (step 11) turns out to be
difficult, since the number of indices varies a lot, depending on how much
an atom is used in sparse signal representations. The GPU we have used
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Figure 5.9: PAK-SVD dictionary update GPU occupancy. The top panel
shows the benefits of keeping I in local memory while the bottom panel
depicts what happens when we move it in global memory.

has 32k local memory, which allows storage of about 8000 indices. If the
number of signals is smaller, we use local memory, which is the ideal solution.
Otherwise, the set I is stored as a global variable and hence global memory
access latency diminishes the performance of the update stage.

In both cases we define a 1-dimensional space of ñ global PEs. We leave
defining the work-group size to the GPU scheduler by usingNDR(〈ñ〉, 〈any〉).

The BLAS operations required for performing the power method were all
done inside the update kernel in a sequential fashion for the same reasons
enumerated when describing BOMP.

BLAS issues. For further optimization we tried using the BLAS library
for OpenCL from AMD. While probably good for one-time use scenarios,
it did not give good performance in our case, which needed multiple calls
for mostly quickly changing, small sized, data. The loss in transfer times
between host and OpenCL memory was not compensated at all by the parallel
computations. We were hence obliged to implement our own versions of
BLAS operations, described in Section 4.3, for both big and small data sets.

Occupancy. In Table 5.3 we analyze the atom update kernel performance
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Table 5.3: Kernel information and occupancy for P-SGK and PAK-SVD
Kernel P-SGK PAK-SVD
I local global local global Limits

VGPRs 6 38 10 40 248
LDS 0 0 0 0 32768
LWS 256 256 256 256 256
GWS 512 512 512 512 16777216
Waves 4 4 4 4 4

VGPRs 24 4 24 4 24
LDS 24 24 24 24 24
LWS 24 24 24 24 24

Occ.(%) 100 16 100 16 100

in terms of GPU occupancy. Our experiments showed that varying the num-
ber of atoms in the dictionary from n = 64 up to n = 512 had no effect on
occupancy. That is why we focus here on the main obstacle: the memory
storage location of the indices set I. Table 5.3 shows that moving the indices
in local memory has a significant impact bumping occupancy from 16% to
100% due to lowering the number of used VGPRs by 32 and 30 in the P-SGK
and, respectively, PAK-SVD case. The difference can also be spotted in Fig-
ure 5.9 by comparing the VGPR screens from the top and bottom panels.
The rest of the occupancy factors are not affected by I.

5.3.2 Results and Performance

We generated experimental data using the same method as described in Sec-
tion 2.5.2 and executed our tests as specified in Section 3.4.

We picked p = 64 and n ∈ {64, 128, 256, 512}, while we ran through a
wide range of signal set dimensions (1024–131072). While we did most of the
profiling around s = 8, we consistently investigated s ∈ {4, 6, 8, 10, 12} when
it came to minimizing the error. For parallelism, we used almost all the time
m̃ = m while we walked ñ from 1, in increments of powers of 2, up to n.

PAK-SVD Case-Study

We first take PAK-SVD as a case-study for the improvements in execution
time, and start by looking at the influence of ñ. As expected, we can see in
Figure 5.10, where m = 16384, that larger ñ gives better results, producing
a speed-up of at least 10 when going from ñ = 1 to ñ = n.
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Algorithm 11: PAK-SVD

Data: initial dictionary D ∈ Rp×n

signals set Y ∈ Rp×m

number of parallel atoms ñ
number of update iterations u

Result: trained dictionary D
sparse representations X ∈ Rn×m

1 for i← 1 to u do
2 for `← 1 to n/ñ do
3 E = Y −DX
4 for j ← (`− 1)ñ+ 1 to `ñ, in parallel do
5 F = EI +DjXj,I
6 Dj = FXT

j,I/‖FXT
j,I‖2

7 Xj,I = F TDj

A similar behavior is visible in Figure 5.11, where we kept a fixed dictio-
nary size of n = 512 atoms and increased the number of patches in the signal
set. Naturally, the speed-up with respect to the case ñ = 1 grows as the size
of the problem increases.

To put things in perspective, we implemented AK-SVD in C for compar-
ing times spent on the CPU versus times spent on the GPU. We tried to keep
the instructions between the two versions the same wherever possible (the
update stage obviously had to vary). As it can be seen in figures 5.10 and
5.11, PAK-SVD is around 10 times faster when ñ = n. It outperforms the
CPU version except for the case where ñ = 1, which is to be expected due to
the error calculation and compensation for each atom update and also due to
the low GPU utilization. For the largest problem, with n = 512, m = 65536,
the speed-up is 11.98.

We also compared the performance of KSVD-Box to our OpenCL imple-
mentation of PAK-SVD. The results varied based on the hardware under-
neath, but on new desktops with multicore processor KSVD-Box has com-
parable or even smaller execution times than PAK-SVD with ñ = n. This is
not surprising, due to the heavily-optimized full and sparse matrix routines
available in Matlab and its multi-threading capabilities. We expect that fur-
ther development of GPU software for numerical computations will increase
the performance of our implementation.

Our measurements showed that a single dictionary update (steps 2–7 of
PAK-SVD) can be 2 to 3 times faster than the sparse representation stage.
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Figure 5.10: Execution times for m = 16384, s = 10, K = 200.
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This observation lead to modifying the original K-SVD algorithm so that
multiple update rounds can be performed during the same SVD iteration.
Thus our experiments included varying the parameter u (step 1). Taking
as a reference the case where u = 1, we found that bumping the number
of rounds to u = 2 or u = 3 does not significantly increase the execution
time. So incrementing u allows us to either reach the same approximation
error faster or to obtain a better approximation in a similar time as u = 1.
We obtained the best results by keeping ñ ≤ 64 and by using u = 1 for the
first 50 iterations, and only afterwards increasing the number of dictionary
updates per SVD iteration (u ≥ 2). We noticed that when u ≥ 2 from the
start with large dictionaries (n = 512) and high parallelism (ñ ≥ 128), the
error actually increases at the second or third consecutive update.

Sparsity, Atoms and Training Set Influence

Here we analyze the execution time improvements brought by our JAU strat-
egy when applied on AK-SVD, SGK and NSGK by varying one dictionary
design parameter (such as the sparsity constraint) and keep the others fixed
(the number of dictionary atoms and training signals).

We present 3 experiments in Figure 5.12 where we vary the sparsity con-
straint, the atoms in the dictionary and the number of signals in the training
set. We depict the JAU versions with green and the sequential versions
with red. Because of the significant difference in execution time, we use a
logarithmic scale. Again, we used k = 200 iterations for all methods.

For the sparsity experiment we used a dictionary of n = 128 and a training
set of m = 8192 and we increased the sparsity from s = 4 to s = 12 in
increments of 2. When studying the dictionary impact on the execution
performance we kept a fixed training set of m = 12288 and a sparsity of s = 6
and varied the atoms from n = 128 in increments of 64 up to n = 512. Finally,
we increased the signal set in increments of 1024 starting from m = 4096 until
m = 16384 with a fixed dictionary of n = 256 and a sparsity of s = 10. In
the panel the abscissa tics represent thousands of signals.

In all of our experiments the JAU versions showed important improve-
ments in execution time, the speed-up reaching values as high as 10.6 times
for NSGK, 10.8 times for SGK and 12 times for AK-SVD. This was to be
expected, since JAU algorithms are naturally parallel in the atom update
stage.
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5.4 Conclusions

We have shown that several dictionary learning algorithms, like AK-SVD [30],
SGK [31] and NSGK [32], benefit from adopting Jacobi (parallel) atom up-
dates instead of the usual Gauss-Seidel (sequential) ones. In the mostly aca-
demic dictionary recovery problem, the parallel and sequential versions have
similar performance. However, in the more practical problem of dictionary
learning for sparse image representation, the proposed parallel algorithms
have a clearly better behavior.

In the second part of this chapter we studied and proposed efficient GPU
implementations using OpenCL for the main algorithms from the dictionary
learning field. We provided a full description of the kernels leading to com-
plete parallel execution of the sparse representation and dictionary update
stages. We also discussed the n-dimensional topology of each kernel and the
optimal storage location of the data structures in order to obtain the best
GPU occupancy.



Chapter 6

Mixing Representation and
Design Methods

In this chapter we provide an empirical investigation of the impact that the
sparse representation algorithm has in DL. The spark to start this study was
the somewhat disconcerting fact that, in a test problem often used in the
DL community, several algorithms gave quite similar result. As explained in
Chapter 4 popular DL methods use OMP in their representation stage. The
immediate but apparently ignored question is if OMP is the bottleneck of
DL algorithms and thus progress in the atom update stage might be masked
by it. Would better representation algorithms allow to discern which atom
update method is in fact superior? Would better representation algorithms
cause a significant decrease of the overall error in the DL problem (2.8)?
Although we cannot provide definitive answers, we try at least to gain more
insight into the DL process and assess DL algorithms on a steadier ground.

We give here numerical results for the two DL problems described in
Chapter 2 that are used very often as benchmark: dictionary recovery and
DL for sparse image representation. In the general structure of Algorithm
1, we use all the combinations of 5 representation methods (OMP, OLS,
POMP, POLS, LAOLS) and 6 atom update methods (SGK, P-SGK, NSGK,
P-NSGK, AK-SVD, PAK-SVD). All DL algorithms are run with the same
data, in particular with the same initial dictionary. For POMP, POLS and
LAOLS we took L = s.

6.1 Dictionary recovery

We generated the training set and the dictionaries as described in Section
2.5.1. Tables 6.1, 6.2, and 6.3 show the percentages of recovered atoms for

73
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all combinations of methods, averaging over 50 tests.
Here are some conclusions that can be drawn from the results.
1. As expected, the more complex representation methods bring indeed

an increase in performance: the recovery percentage obtained with POMP,
POLS and LAOLS (especially the first two) is clearly better than with OMP,
for all atom update methods. OLS and OMP are almost at the same level,
with a marginal advantage for OLS.

2. For the same representation method, there is little difference between
the atom update methods. The conclusion is that the recovery test (with
these commonly used data) is not relevant for comparing atom update meth-
ods and that the sparse representation is actually the bottleneck here. A
reason may be the small size of the problem or the constant used to decide
similarity between the recovered and original atoms. In any case, it appears
that the progress in atom update methods can no longer be assessed with
this test.

6.2 Dictionary learning

We built the training signals Y from m = 8192 random patches that we
generated as described in Section 2.5.2. With these signals, we trained dic-
tionaries of size n = 256 over 200 iterations, with target sparsity s = 8,
using again all combinations of methods. The final errors (2.9) are shown in
Table 6.4 while the evolution of the representation error over the number of
iterations is depicted in figures 6.1–6.11.

Regarding the final error, the conclusions are mixed. With a single excep-
tion, all the other representation methods are better than OMP, often much
better; in this sense, the results are meeting normal expectations. The best
results for an atom update method (in bold) are similar and OLS, LAOLS
and POLS share the winners, while POMP is rather disappointing. OLS is
clearly better for the parallel methods, a feature shared by OMP and POMP.
On the contrary, LAOLS and POLS are systematically better for the sequen-
tial methods. We do not have an explanation for this feature of the results.

Figures 6.1–6.6 present the error evolution for each atom update method
combined with the diverse representation methods. The error does not de-
crease uniformly, especially in the first iterations. The parallel methods suffer
more from sudden increases in error, however having a decreasing trend.

In Figure 6.1, depicting the results for the SGK algorithm, we can see
that OMP is the worst performer with POLS and LAOLS being the clear
winners. The parallel version (Figure 6.2) keeps OMP in last place, with OLS
taking the lead. Here the error curves are not as smooth and the differences
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Table 6.1: Percentage of recovered atoms for SGK and P-SGK

s Method SNR
10 20 30 ∞

3

SGK(OMP) 86.84 90.32 90.20 88.72
SGK(OLS) 89.08 89.04 89.48 89.00

SGK(POMP) 91.48 92.72 93.48 93.48
SGK(POLS) 91.80 92.88 93.48 92.44

SGK(LAOLS) 89.24 92.24 92.52 92.88
P-SGK(OMP) 87.76 90.44 90.12 89.16
P-SGK(OLS) 86.52 90.60 90.76 89.40

P-SGK(POMP) 92.04 94.56 93.48 92.52
P-SGK(POLS) 91.48 92.64 93.64 92.48

P-SGK(LAOLS) 88.92 92.92 92.24 92.40

4

SGK(OMP) 71.52 92.16 92.32 91.72
SGK(OLS) 73.80 93.20 93.36 93.20

SGK(POMP) 88.04 96.24 95.48 96.40
SGK(POLS) 87.60 96.28 95.76 96.72

SGK(LAOLS) 85.84 95.52 93.80 94.96
P-SGK(OMP) 65.64 92.68 92.04 92.48
P-SGK(OLS) 73.36 92.64 91.68 93.40

P-SGK(POMP) 87.16 96.84 95.76 96.44
P-SGK(POLS) 89.96 96.36 96.04 96.04

P-SGK(LAOLS) 84.64 95.32 95.24 94.88

5

SGK(OMP) 10.56 93.32 93.64 93.64
SGK(OLS) 12.28 94.96 94.84 94.56

SGK(POMP) 53.72 98.12 97.52 98.84
SGK(POLS) 64.72 98.52 97.48 97.84

SGK(LAOLS) 58.44 96.76 97.32 97.24
P-SGK(OMP) 10.44 93.24 93.80 93.96
P-SGK(OLS) 12.12 94.16 94.12 94.72

P-SGK(POMP) 56.32 98.28 98.12 98.20
P-SGK(POLS) 69.28 98.36 98.12 97.60

P-SGK(LAOLS) 57.76 96.56 97.48 97.36



76 CHAPTER 6. MIXING

Table 6.2: Percentage of recovered atoms for NSGK and P-NSGK

s Method SNR
10 20 30 ∞

3

NSGK(OMP) 87.12 90.52 90.32 89.92
NSGK(OLS) 87.44 91.52 90.28 90.52

NSGK(POMP) 91.40 93.16 92.48 93.96
NSGK(POLS) 90.96 93.32 93.28 93.40

NSGK(LAOLS) 88.76 92.52 92.20 92.44
P-NSGK(OMP) 86.12 90.52 91.36 89.84
P-NSGK(OLS) 87.60 92.08 90.40 90.04

P-NSGK(POMP) 90.36 93.48 93.28 91.88
P-NSGK(POLS) 91.48 93.76 92.96 93.32

P-NSGK(LAOLS) 88.44 92.52 92.60 93.36

4

NSGK(OMP) 68.16 92.88 92.76 92.84
NSGK(OLS) 70.76 94.04 93.28 93.04

NSGK(POMP) 85.40 96.60 95.96 96.68
NSGK(POLS) 86.32 96.36 95.80 95.80

NSGK(LAOLS) 83.44 96.08 95.60 95.48
P-NSGK(OMP) 69.28 93.64 92.92 93.88
P-NSGK(OLS) 70.24 93.48 93.44 93.96

P-NSGK(POMP) 87.44 96.44 96.20 96.04
P-NSGK(POLS) 88.76 96.52 96.12 96.44

P-NSGK(LAOLS) 83.64 95.00 95.20 95.48

5

NSGK(OMP) 9.60 94.12 93.88 94.16
NSGK(OLS) 8.08 94.96 94.72 95.04

NSGK(POMP) 53.48 98.52 97.80 97.72
NSGK(POLS) 67.96 97.48 97.48 97.76

NSGK(LAOLS) 56.96 97.08 97.08 97.72
P-NSGK(OMP) 11.68 94.32 93.60 93.52
P-NSGK(OLS) 8.96 94.84 95.12 94.40

P-NSGK(POMP) 51.72 98.32 98.56 98.32
P-NSGK(POLS) 65.52 98.20 98.20 97.72

P-NSGK(LAOLS) 51.96 97.64 97.56 97.36
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Table 6.3: Percentage of recovered atoms for AK-SVD and PAK-SVD

s Method SNR
10 20 30 ∞

3

AK-SVD(OMP) 88.00 89.16 89.96 88.20
AK-SVD(OLS) 88.72 90.52 89.68 89.84

AK-SVD(POMP) 91.24 94.00 92.92 92.32
AK-SVD(POLS) 91.48 93.40 92.88 92.56

AK-SVD(LAOLS) 88.40 92.08 92.76 92.28
PAK-SVD(OMP) 87.76 90.44 90.12 89.16
PAK-SVD(OLS) 86.52 90.60 90.76 89.40

PAK-SVD(POMP) 92.04 94.56 93.48 92.52
PAK-SVD(POLS) 91.52 92.64 93.64 92.48

PAK-SVD(LAOLS) 88.92 92.64 92.28 92.44

4

AK-SVD(OMP) 71.80 92.44 92.76 92.68
AK-SVD(OLS) 73.12 93.44 92.96 92.96

AK-SVD(POMP) 88.04 96.84 95.84 96.76
AK-SVD(POLS) 88.24 96.04 96.36 95.60

AK-SVD(LAOLS) 82.92 94.92 96.24 95.68
PAK-SVD(OMP) 65.64 92.68 92.04 92.48
PAK-SVD(OLS) 73.36 92.64 91.68 93.40

PAK-SVD(POMP) 87.16 96.84 95.76 96.44
PAK-SVD(POLS) 90.08 96.36 96.04 96.04

PAK-SVD(LAOLS) 84.60 95.32 95.24 94.92

5

AK-SVD(OMP) 10.48 93.44 93.20 93.00
AK-SVD(OLS) 12.24 93.64 94.60 95.20

AK-SVD(POMP) 54.04 98.44 97.64 98.12
AK-SVD(POLS) 62.56 98.12 98.28 98.96

AK-SVD(LAOLS) 48.16 96.96 96.72 96.44
PAK-SVD(OMP) 10.44 93.24 93.80 93.96
PAK-SVD(OLS) 12.12 94.16 94.12 94.72

PAK-SVD(POMP) 56.32 98.28 98.12 98.20
PAK-SVD(POLS) 69.16 98.36 98.12 97.52

PAK-SVD(LAOLS) 59.60 97.56 97.00 97.36
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between the sparse representations methods are not as pronounced.
Again, for AK-SVD (Figure 6.3) OMP provides the worst approximation

but now POLS comes first with LAOLS in second place. The differences
between the representation algorithms are also clearer in this graph. PAK-
SVD (Figure 6.4) has a relatively similar behaviour as PSGK in that the
error differences are smaller than in the sequential version. OLS is first and
OMP is last.

Figure 6.5 shows NSGK whose error curves are not smooth, unlike its
sequential competitors, with OMP (which comes in last) having the most
accentuated variations. POLS and LAOLS distance themselves to the top
again. It is a bit of a surprise to see the parallel version (Figure 6.6) with
smooth curves for all algorithms besides OMP (which again places last). For
the third time, OLS is the clear winner.

Figures 6.7–6.11 present the error evolution from the viewpoint of the
sparse representation methods. We note that POMP, POLS and LAOLS
have a smoothing effect on the curves for all atom update methods, the
decrease being more or less uniform after the first iterations.

We can see in Figure 6.7 that the dictionary update algorithms that
make the most out of OMP are the Jacobi versions that give almost identical
results. P-NSGK stands out for its irregular error descend. SGK and AK-
SVD are clearly the poorest performers.

Figure 6.8 shows that OLS has a profound smoothing effect on P-NSGK
placing it first with P-SGK and PAK-SVD coming in second with curves
similar to the OMP case. SGK and AK-SVD are again last.

POMP (Figure 6.9) bumps P-SGK and PAK-SVD first and SGK last.
We notice a general smoothing effect on all the parallel update methods.

POLS (Figure 6.10) provides better approximations for all 6 atom al-
gorithms and maintains the smoothing effect. It is interesting to see that
AK-SVD is the best choice for POLS while, for the first time a parallel algo-
rithm, P-NSGK, comes in last.

In terms of smoothness, LAOLS (Figure 6.11) seems to be the best choice.
Even though it does not provide the smallest errors for all methods, its results
are similar to POLS. At the top we find SGK and NSGK, sequential wins
again, with P-NSGK in last place, again.

Finally, one may wonder if the designed dictionaries could be used with
OMP as representation method, although another method has been employed
in learning. The reason is that one may need the dictionaries in practical
applications where speed is of the essence, hence one may want to use the
fastest reliable representation method, i.e. OMP, which is at least a few times
faster than the other methods discussed in this study. On the contrary, in
learning, which is a one-time operation, we often have the luxury to use
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Figure 6.1: Error evolution for SGK with different representation methods.
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Figure 6.2: Error evolution for P-SGK with different representation methods.
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Figure 6.3: Error evolution for AK-SVD with different representation meth-
ods.
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Figure 6.4: Error evolution for PAK-SVD with different representation meth-
ods.
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Figure 6.5: Error evolution for NSGK with different representation methods.
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Figure 6.6: Error evolution for P-NSGK with different representation meth-
ods.
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Figure 6.7: Error evolution for OMP with different dictionary update meth-
ods.
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Figure 6.8: Error evolution for OLS with different dictionary update meth-
ods.
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Figure 6.9: Error evolution for POMP with different dictionary update meth-
ods.
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Figure 6.10: Error evolution for POLS with different dictionary update meth-
ods.
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Figure 6.11: Error evolution for LAOLS with different dictionary update
methods.

higher complexity methods for obtaining a very good dictionary. So, we
computed with OMP the representations X associated the dictionaries D
designed by the various methods. The errors are given in Table 6.5, whose
structure is similar to that of Table 6.4. The first column is identical, since
OMP is used both for learning and representation. The other columns are
different, since the method used for learning is not OMP. As expected, the
results in Table 6.5 are generally worse than those in Table 6.4. However, we
are interested in the results that are better than in the first column; these are
shown with bold digits. Remarkably, POLS gives consistently better results,
which means that we could use any atom update method coupled with POLS
in the DL process, then use the designed dictionary with OMP and thus get
better representations than using OMP in training. We can say that this is
a new design method that is better than the current methods in exactly the
same conditions.
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Table 6.4: DL final errors

OMP OLS POMP POLS LAOLS

SGK 0.0162 0.0150 0.0153 0.0124 0.0117
P-SGK 0.0136 0.0119 0.0126 0.0129 0.0133
NSGK 0.0154 0.0139 0.0139 0.0126 0.0116

P-NSGK 0.0136 0.0116 0.0127 0.0136 0.0141
AK-SVD 0.0162 0.0150 0.0148 0.0114 0.0124
PAK-SVD 0.0136 0.0119 0.0126 0.0130 0.0132

Table 6.5: Representation errors using designed dictionaries and OMP

OMP OLS POMP POLS LAOLS

SGK 0.0162 0.0332 0.0170 0.0119 0.0127
P-SGK 0.0136 0.0156 0.0157 0.0124 0.0136
NSGK 0.0154 0.0252 0.0149 0.0123 0.0124

P-NSGK 0.0136 0.0133 0.0159 0.0128 0.0144
AK-SVD 0.0162 0.0251 0.0165 0.0119 0.0136
PAK-SVD 0.0136 0.0156 0.0157 0.0124 0.0136

6.3 Conclusions

We have studied the effects of combining several sparse representation and
atom update methods for solving the problem of overcomplete dictionary
design. As expected, replacing OMP with more sophisticated methods like
OLS, POMP, POLS and LAOLS leads to better results and smoother conver-
gence. In image representation applications, we also conclude that combining
OLS with parallel atom update methods gives systematically good results.
Finally, combining POLS and any considered atom update method produces
dictionaries that give small representation errors also with OMP, thus allow-
ing the fastest implementation for the use of the designed dictionary and
obtaining better representations than all existing dictionary design methods
that employ OMP in the learning process.



86 CHAPTER 6. MIXING



Part III

Particular Dictionary Forms

87





Chapter 7

Structured Dictionaries

7.1 Introduction

While the generic dictionary learning problem does not impose any specific
structure on the dictionary D, some methods [33,34] build the dictionary as a
union of smaller blocks consisting of ortonormal bases (ONBs) that transform
the optimization problem into:

minimize
D,X

‖Y − [Q1Q2 . . . QK ]X‖2F
subject to ‖xi‖0 ≤ s, ∀i

QT
j Qj = Ip, 1 ≤ j ≤ K,

(7.1)

where the union of K ONBs denoted Qj ∈ Rp×p, with j = 1 . . . K, represents
the dictionary D.

The union of orthonormal basis algorithm (UONB) [33] and the single
block orthogonal (SBO) [34] algorithm enforce this structure on the dictio-
nary by using singular value decomposition (SVD) to create each orthonormal
block. The difference between the two is that for representing a single data
item the former uses atoms selected via OMP from all bases, while the later
uses atoms from a single orthoblock. Because of its representation strategy,
SBO uses more dictionary blocks than UONB but also executes faster while
maintaining the same representation error.

We are interested in parallelizing SBO because it brings data-decoupling
through its single block representation system and also because it does not
depend on OMP which raised hard full GPU occupancy problems, even when
applying the partitioned global address space approach, due to its high mem-
ory footprint [52].

This chapter presents in Section 7.2 an improved parallel algorithm called
P-SBO, followed by details of its OpenCL implementation in Section 7.3, and

89
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Algorithm 12: SELECT

Data: unsorted list x ∈ Rn, partial selection s
Result: partially sorted list x

1 for i← 1 to s do
2 maxidx = i
3 maxval = x(i)
4 for j ← i+ 1 to n do
5 if |x(j)| > |maxval| then
6 maxidx = j
7 maxval = x(j)

8 x(i)↔ x(maxidx)

the numerical results supporting its representation error and execution time
improvements in Section 7.4.

7.2 The P-SBO Algorithm

We term our algorithm P-SBO which is short for parallel single block or-
thogonal algorithm. P-SBO builds the dictionary as a union of orthoblocks.
Each data-item from Y is constrained to use a single block Q for its sparse
representation x such that:

y ≈ Qx. (7.2)

The representation of x results from computing the product x = QTy and
then hard-thresholding the s highest absolute value entries. This is performed
through partial selection as described in algorithm 12.

Given a list x the algorithm proceeds to do in-place sorting by finding
the absolute maximum value (steps 4–7) and placing it at the top of the
list (step 8). This is repeated s times (step 1) by performing the search on
the remaining entries from x (steps 2–3). Even though this has an O(sn)
complexity, which is asymptotically inefficient, in our case s is small enough
that it makes our choice sufficiently efficient and trivial to implement. We
note that the fastest (but more involved) partial sorting algorithm [53] has
O(n) complexity.

The best orthonormal base j to represent a given signal y is picked by
computing the energy of the resulting representation coefficients from x and



7.2. THE P-SBO ALGORITHM 91

Algorithm 13: 1ONB

Data: signals set Y , initial dictionary Q0,
target sparsity s, number of rounds R

Result: trained dictionary Q, sparse coding X

1 Q = Q0

2 for r ← 1 to R do
3 X = QTY
4 Xj = SELECT(Xj, s),∀j
5 Apply Procrustes orthogonalization (7.6) on Y and X to

approximate Q

selecting the orthobase where the energy is highest. Let

Ex =

p∑
n=1

|xn|2 (7.3)

denote the energy of a given signal x and

xi = SELECT(QT
i y, s) (7.4)

denote the representation of signal y with base i, then picking the best or-
thonormal base can be expressed as

j = argmax(Exi)
i=1...K

. (7.5)

It is enough to compute the energy of the representations because the norm
is preserved by the unitary dictionary blocks. Following this method, each
data-item from Y is represented by a single orthobase in a process that we
will call representation.

The alternative optimization iterations for performing dictionary learning
on a single orthonormal base is presented in Algorithm 13.

By keeping a fixed dictionary Q, step 3 computes the new representations
X and step 4 performs hard-thresholding through partial sorting to select the
largest s values on each column. Using the new matrix X, the dictionary is
refined (step 5) by using the product of the resulting orthonormal matrices
from the SVD computation of Y XT . This orthogonal approximation of X
and Y is also called Procrustes orthogonalization [54] in the literature:

P = Y XT

UΣV T = SVD(P )

Q = UV T .

(7.6)
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Algorithm 14: P-SBO

Initialization

1 Iteratively train K0 orthonormal blocks by randomly selecting P0

signals from Y and applying 1ONB R times: D = [ Q1 . . . QK0 ]
2 Represent each data-item with only one of the previously computed

ONBs following (7.5)

Iterations

3 Construct the set of the worst W represented data items and train K̃
new orthobases with this set. Add the new bases to the existing union
of ONBs.

4 Represent each data item with one ONB
5 Train each orthobase over its new data set
6 Check stopping criterion

The results from [33] show that, with a good initialization (step 1), good
results can be reached by just a few iterations (R < 5 in step 2). Also, a
good starting point when creating a new orthoblock is to use the left-hand
side orthonormal matrix of the SVD decomposition of the given data set

Y = UΣV → Q0 = U. (7.7)

Based on the above, P-SBO is described in Algorithm 14. The method
is split in two parts: the initialization phase and the dictionary learning
iterations.

The initialization phase builds a small start-up dictionary consisting of K0

orthobases each trained with P0 sized signal chunks that are used by 1ONB
to initialize and train a new orthobase (step 1). The resulting dictionary is
used by step 2 to perform data item representation which leads to an initial
sparse representation set.

The training iterations start by building K̃ new orthobases for the worst
W represented signals using Algorithm 13 and expanding the dictionary to
include the new ONBs (step 3). Training K̃ > 1 orthobases per iteration
improves the SBO algorithm proposed in [34] by providing a better repre-
sentation error and at the same time reducing the execution time as can be
seen in the numerical experiments from Section 7.4.

Given that the dictionary has changed, a new data-item representation
is needed and with that step 4 computes a new set of sparse representations.
Step 5 refines the dictionary D by applying 1ONB on each orthobase over its
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newly associated data set. The learning process is stopped by either reaching
a given target error or the permitted maximum number of orthonormals.

7.3 Parallel SBO with OpenCL

In this section we will go through the main points behind our parallel version,
then give some details on the OpenCL specifics.

7.3.1 Parallel Representations

The sparse representations are completely independent and so their compu-
tation is done in parallel by applying (7.5) on each data-item. More specific,
for each signal from Y we compute the representations with every available
orthoblock and pick the one that has the highest energy.

This task fits naturally on the map-reduce model (Figure 7.1). We map
the data in signal-orthobase pairs that produce the energy of the resulting
sparse representation. Each pair computes the representation with the cur-
rent dictionary block j (x = QT

j y), does a hard-threshold on the largest s
items in absolute value, and outputs the energy E of the resulting sparse
coding. Parallelization is done in bulk by performing the above for all ONBs
at once in groups of m̃ signals. The result is that each data item has an
associated energy list of its representation with each block from the dictio-
nary. We reduce the list, for each signal in Y , to the element with the largest
energy leading to the choice of a single representation block.

7.3.2 Parallel Dictionary Training

Dictionary learning is performed by the operations of 1ONB described in
Algorithm 13. P-SBO makes use of 1ONB in three different contexts: once
during the initialization phase (step 1), and twice during the training iter-
ations while learning a new dictionary for the W worst represented signals
(step 3) and while training the existing dictionary over its new data set (step
5).

Due to the decoupled nature of the data, we add parallelism at the dictio-
nary level (each orthoblock is initialized and trained in parallel) and we also
further parallelize the steps of each orthoblock training instance (see Figure
7.2). This approach allows us to execute the sequential operations inside
1ONB (mainly the SVD routines) in parallel for each dictionary block.

The following provides the parallel implementation details of each step
from Algorithm 13. If an initial orthonormal basis is not supplied, we gen-
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Figure 7.1: MapReduce for m̃ = 1 and K orthobases

erate a new basis by using the singular value decomposition as described in
(7.7). This, along with the other SVD operation from step 5 are executed
in parallel for each dictionary block. The alternative optimization iterations
(steps 3–5) train the orthonormal dictionary Q such that ‖Y − QX‖F is
minimized or reduced. First, keeping a fixed dictionary, the sparse represen-
tations are computed in step 3. Since this is done via matrix multiplication
of large dimensions it can be easily parallelized through the classic concur-
rent sub-block multiplication routines. The target sparsity is obtained by
hard-thresholding the largest s absolute value entries (step 4). We compute
the thresholding in parallel for groups of m̃ signals by evenly partitioning
the global address space for each thread of execution. Second, using the new
matrix X, we update the dictionary in step 5 via the SVD decompositon of
Y XT (see Equation 7.6) by using the resulting orthonormal matrices U and
V . We perform the Y XT matrix multiplication and the decomposition in
parallel just as we did before. Q = UV represents a matrix multiplication
of relatively small dimensions (p × p) for which analysis showed that it is
better to employ a partitioned global address space strategy so that each
thread performs a few corresponding vector-matrix operations resulting in a
simultaneous update of all orthobases.
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...Q0

Q1 Q2 QK

SVD SVD SVD

...X = QTY

SELECT

...Y XT

...USV SVD SVD SVD

Q = UV T

Figure 7.2: The parallel execution of 1ONB for R = 1 rounds and K or-
thobases. Each block represents a task and each sub-block depicts a thread
of execution within that task.
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7.3.3 OpenCL Implementation Details

We described the OpenCL standard and its execution model along with mea-
suring kernel efficiency in Chapter 3. Here, we are going to use these notions
to look at the SBO and 1ONB implementations in OpenCL.

Matrix Multiplication

Steps 3 and 5 from the 1ONB algorithm were implemented using the BLAS
library for OpenCL from AMD. The AMD kernels follow the classic GEMM
BLAS model. Input matrices and the result are stored in global memory.
The operation first creates matrix sub-groups and then does block-based
full-matrix multiplication on them. While the AMD implementation does
not take full advantage of the hardware underneath, it is fast enough for our
use-case. We compensate its poor occupancy of the GPU resources (profiling
our simulations with AMD’s CodeXL showed 33.3% for the sub-grouping
and 25% for the block multiplication) by scheduling as many simultaneous
GEMM operations as there are orthobasis (P-SBO step 1 and step 5).

Representation

Given k orthoblocks, all the operations required for finding the best dictio-
nary block for the sparse representation of each data item from the signal
set, P-SBO step 2 and 4, were packed and implemented by a single OpenCL
kernel following the optimization problem (7.5).

The input matrices as well as the resulting orthobase representation index
of each signal and its energy are kept in global memory. We can keep the
actual sparse representations in private memory because only the energy and
base representation indices are needed by P-SBO. During representation, the
sparse signal storage is accessed multiple times for each orthobase in order to
compute x = QTy. Keeping the memory private gains us low latency times at
the expense of an increased number of vector general purpose registers used
which, in turn, leads to a lower occupancy level. Our numeric experiments
showed that lower latency outbids by far a partitioned global memory, full-
occupancy version of the kernel.

We designed the representation kernel following the map-reduce paradigm.
We map each work-item to a signal-orthoblock couple. Each processing el-
ement is in charge of sparse coding and computing the resulting energy of
a few m̃ signals using a single orthobase. The energy is saved in a matrix
in local memory at the signal-orthobase coordinates corresponding to the
work-item’s position in the work-group. We keep 2-dimensional work-groups
with orthobases in the first dimension and signals on the second as depicted
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Figure 7.3: Representation kernel occupancy for K = 24 orthobases

on the left side of Figure 7.1. And so we split the signal set in m̃ sized
chunks representing the number of work-groups scheduled for processing on
the compute-units, corresponding to an NDR(〈k,m〉, 〈k, m̃〉) splitting. The
reduction on the columns of the energy matrix is performed by each work-
item with ID 0 in the orthobase dimension (see the right-side of Figure 7.1).
Even though this approach leaves most of the work-items idling when reduc-
ing, the overhead of doing map-reduce in the same kernel (opposed to doing
it in two separate ones) is insignificant in this case.

This design choice and the way it affects occupancy can be observed in
Figure 7.3 that shows how resource utilization affects the number of simulta-
neous active wavefronts for the representation kernel. As expected, keeping
the sparse representations in private memory increased the number of VGPRs
used that in turn limited the number of active wavefronts to 6 as depicted
in the center graph. The left and right panes show that increasing the work-
group size to more than 192 work-items or expanding the LDS past 16KB
would decrease the device occupancy even further.

Dictionary Training

The dictionary update process, P-SBO step 1 and step 5, was split into parts
and implemented by multiple OpenCL kernels. We keep the input matrices
for the dictionary and the signal set in global memory as well as the resulting
sparse representations. The dictionary bases are modified in-place.

Before starting the dictionary training phase in P-SBO’s step 5, we group
the signals in blocks based on the dictionary-base used for their represen-
tations. This speeds-up the training process by using coalesced memory in
P-SBO’s parallel implementation. We first build a list of signals for each base
Q and then we walk it contiguously copying the signals in base order and
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Figure 7.4: Partial selection kernel occupancy for m = 16384 signals

overwriting the matrix Y . This is a cheap operation that brings a big perfor-
mance boost by helping data access times of the execution threads. Copying
proved to be up to 1000× more effective by mapping the signal matrix in
host memory and using memcpy than plainly using clEnqueueCopyBuffer.

For the implementation of Algorithm 13 we decided to use a Numeri-
cal Recipes based implementation of the SVD algorithm. We execute it in
parallel through an OpenCL kernel for each orthoblock on the GPU with
an NDR(〈k〉, 〈1〉) splitting. The matrix multiplications (steps 3 and 5), as
discussed earlier, are processed by the BLAS kernels from AMD.

The operations for partial selection (step 4 in 1ONB) were packed and
implemented as a separate OpenCL kernel. The sparse signal set is kept
in global memory and each work-item is in charge of doing SELECT on m̃
signals. Numerical experiments on our hardware pointed out that a splitting
of NDR(〈m〉, 〈m̃ = 256〉) gives the best performance results while keeping
full GPU occupancy.

Figure 7.4 shows how resources limit the number of active wavefronts for
the partial selection kernel. We can see that using a work-group size within
128 and 256 work-items, up to about 10 VGPRs and an LDS size of less than
10KB would permit the partial selection kernel to reach full utilization of the
GPU. Our kernel is marked with a squared dot on the graphs from figure 7.4
and it is clearly within these limits.

Due to the small dimensions p of the block dictionaries, using the BLAS
library from AMD for processing Q = UV from step 5 of 1ONB for each or-
thobase did not cover the I/O costs. For that, we implemented a custom ma-
trix multiplication kernel that performs the operation in parallel for the entire
dictionary. And so, each work-group is in charge of computing the updated
orthobase corresponding to its group-id, resulting in an NDR(〈k× m̃〉, 〈m̃〉)
splitting. Work-items within a work-group are performing vectorized vector-
matrix multiplication that calculate the lines of the new orthobase corre-
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Table 7.1: Kernel information and occupancy for m = 16384, K = 16 and
s = 4

Kernel Rep. Select GEMV Energy Limits
VGPRs 35 9 8 4 248

LDS 1024 0 0 0 32768
LWS 80 256 256 192 256
GWS 81920 16384 1280 3072 16777216
Waves 2 4 4 3 4

VGPRs 6 24 28 24 24
LDS 16 24 24 24 24
LWS 16 24 24 24 24

Occ.(%) 25 100 100 100 100

sponding to their local-id. Given that Q ∈ Rp×p, the rows each work-item
has to compute is given by the ratio of p/m̃. For p dimensioned k orthobases
we found that a subunitary ratio of the form NDR(〈k × m̃〉, 〈m̃ = p × 8〉)
gives full occupancy on our GPU.

Updating the energy of the newly created sparse representations (needed
in step 3 of the next P-SBO iteration for building the worst represented sig-
nals set W ) is implemented by partitioning the global address space with
another OpenCL kernel. The representation matrix and the associated en-
ergy set are kept in global memory. Each work-item independently computes
the energy for m/m̃ signals with no work-group cooperation resulting in an
NDR(〈m̃〉, 〈any〉) split. We found that full-occupancy is reached on our
hardware by using the NDR(〈K× l〉, 〈l = 192〉) partitioning, where K is the
maximum allowed number of orthobases.

Table 7.1 provides an overview of the kernels n-dimensional topology and
resource utilization while performing dictionary learning with a training sig-
nals set of m = 16384 of size p = 32 each with a target sparsity s = 4 and
K = 16 orthoblocks.

Each column but the last represents a kernel (representation, partial selec-
tion, custom vector-matrix multiplication and energy update, respectively).
The last column shows the device limits.

The table is split in two parts. The first part shows the vector GPR usage
per work-item, the LDS usage per work-group, the flattened work-group size,
the flattened global work size, and the number of waves per work-group,
respectively for each kernel. We can see that the representation kernel uses
a lot of VGPRs in comparison with the other kernels resulting in a reduced
number of waves. It is also visible that it uses the highest number of work-
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Table 7.2: PAK-SVD performance for m = 32768, p = 64, s = 8 with ñ = n
and K = 100.

n 64 96 128 160 256
tlearn(s) 366.8 396.7 416.5 438.4 642.4
trep(s) 0.3467 0.3753 0.8207 0.5889 2.2436
RMSE 0.0271 0.0246 0.0242 0.0230 0.0216

Table 7.3: Parallel SBO performance for m = 32768, p = 64, s = 8 with
K0 = 5 and R = 6

K 8 16 24 32 64
tlearn(s) 1.8 6.7 12.3 20.9 85.4
trep(s) 0.0020 0.0021 0.0022 0.0021 0.0021
RMSE 0.0268 0.0245 0.0240 0.0238 0.0235

items due to the mapping strategy described earlier. The rest of the kernels
require similar resources for execution, maximizing the number of waves per
work-group and thus leading to full GPU occupancy.

In the lower part of the table we can see the constraint imposed on the
total number of active waves by each resource utilization: VGPRs, local
memory and local work size, respectively. The last entry shows the result-
ing percentage of GPU occupancy. While local memory and work-group size
would allow for the simultaneous execution of 16 wavefronts, the VGPRs
permit only 6 out of 24 thus resulting in a 25% occupancy for the representa-
tion kernel. For the rest of the kernels the constraints permit the maximum
number of waves to be executed. More so, in the case of the vector-matrix
kernel the reduced number of used VGPRs would allow more active waves
than the device’s limit.

7.4 Results and Performance

We generated our experimental data as described in Section 2.5.2 and exe-
cuted our tests as specified in Section 3.4.

7.4.1 Execution Improvements

Tables 7.2 and 7.3 depict the differences in final representation error, the total
time spent on dictionary learning (tlearn) and the time it takes to represent
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Figure 7.7: Execution times for m = 32768, K = 48, p = 64.

the data set with the final dictionary (trep). We vary the total number of P-
SBO orthoblocks K = {8, 16, 32, 64} and compare with PAK-SVD instances
running with a dictionary of n = {64, 96, 128, 256} atoms and K = 100 iter-
ations using full parallelization during the atoms update phase (n = ñ) for
which the numerical simulations in [52] gave the best representation error and
the fastest execution times. For PAK-SVD we used the OpenCL implemen-
tation described in Section 5.3. We compare the resulting approximations
by looking at the root mean square error (2.9) which we express graphically
in decibels.

While PAK-SVD can produce a slightly better error than P-SBO, the
time difference is significant with P-SBO being up to 203.8 times faster than
PAK-SVD at dictionary learning and 1068.4 times faster at producing sparse
representations. Even though P-SBO’s dictionary size is larger, the total
memory footprint is smaller than PAK-SVD because of OMP’s high memory
requirements. This issue was detailed in Section 4.3.1, where we discussed
the Batch OMP parallel OpenCL implementation.

Turning our focus towards different P-SBO implementations, we see in
Figure 7.5 that the OpenCL implementation gives better results than the
Matlab and C counterparts. Keeping a fixed number of orthonormal bases
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Table 7.4: P-SBO performance for m = 32768, p = 64, s = 8 with K0 = 5,
R = 6

K̃

W
8192 4096 2048

t(s) RMSE t(s) RMSE t(s) RMSE

1 379 0.0222 399 0.0224 361 0.0226
2 192 0.0212 192 0.0216 187 0.0221
4 101 0.0208 98 0.0213 96 0.0217
8 57 0.0207 57 0.0213 56 0.0218
16 32 0.0206 32 0.0213 30 0.0218
32 18 0.0209 19 0.0214 18 0.0219
64 12 0.0215 12 0.0218 - -

K = 64 and representing signal sets from as low as m = 8192 up to
m = 32768, the parallel version performs 3.4 times faster than the Matlab
implementation and 10.3 times faster than the single CPU C implementation.

Figure 7.6 describes the performance results with a fixed signal set of
m = 24576 and a variable dictionary size starting from K = 8 orthoblocks
up to K = 64. Again we can see that the OpenCL version performs a lot
better than the other implementations, giving speed-ups up to 7 times.

Looking at Figure 7.7 we see that the target sparsity s does not really
affect running times. We kept a fixed signal set m = 32768 and a fixed
dictionary of K = 48, and we varied the sparsity from s = 4 to s = 12 on a
fixed signal dimension of p = 64.

7.4.2 Training Multiple K̃ Bases

The representation error and execution improvement of P-SBO over SBO is
depicted in Table 7.4 where we varied the value of K̃ in the Matlab imple-
mentation of P-SBO starting from K̃ = 1 to K̃ = 64. We used an identical
training signals set of m = 32768 items of size p = 64 each with a sparsity
constraint of s = 8 and R = 6 1ONB training rounds. The representation
error is improving as K̃ grows until it reaches a point where the training
set is too small for properly training an orthobase and so the error starts to
slightly depreciate. The result is consistent with different sizes of the worst
reconstruction set W .

Figure 7.8 shows the error evolution of the P-SBO algorithm as new bases
are trained and added to the union of ONBs for different values of K̃. We
can see that the representation error improves and drops a lot faster as we
increase the number of orthobases trained at step 3 in algorithm 14.
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As the number of orthobases trained for the worst-reconstructed signals
set W increases the number of training iterations (P-SBO steps 3–6) shrinks
resulting in faster execution times. This improvement is depicted in Figure
7.9 where we show the elapsed time after each training stage when running
P-SBO with the same inputs and the same constraints but with different
values of K̃.

7.5 Conclusions

We provided an improved algorithm that reduces the representation error
and cuts the execution time and we also proposed an efficient parallel im-
plementation of the P-SBO algorithm. Dictionary updates are performed
by refining each of the orthonormal bases concurrently. Also, we completely
parallelized, in a map-reduce manner, the pursuit of finding the single best
orthobase for representing a given signal. Our implementation was done in
OpenCL and tested on the GPU.

Our parallel version achieves a good trade-off between algorithm complex-
ity and data-set approximations compared to PAK-SVD due to the different
representation approach and the low-memory footprint of P-SBO’s represen-
tation strategy leading to better GPU occupancy confirmed in our numerical
results that show a speed-up of about 200 times for dictionary learning while
providing an improved representation quality. Despite its much larger dictio-
nary size, P-SBO has a significantly lower representation time (simulations
show about 1000 times speed improvement), which makes it appealing for
real time applications. Also, simulations showed that P-SBO can perform
about 33 times faster on the same data than SBO while also providing an
improved dictionary resulting in better sparse representations.
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Chapter 8

Cosparse Learning

8.1 Introduction

So far in this thesis we have focused on the dictionary learning process of
Equation (2.8), where we are interested in the few non-zero entries of the ap-
proximations. This process is also called in the literature the synthesis-based
sparse representation model [27]. Recent years have shown approximation
improvements when instead we analyze the set of atoms that do not partici-
pate in representing a signal. This process is also called the cosparse analysis
model and is described in detail in [55].

In the cosparse or analysis model, the overcomplete dictionary is Ω ∈
Rn×p, with n > p, and the atoms are the rows of the dictionary. For a given
signal y, the representation, now denoted z ∈ Rp, is orthogonal on a set I of
n−s atoms (named cosupport), so again it lies in an s-dimensional subspace,
and the representation problem is

minimize
z,I

‖y − z‖22
subject to ΩIz = 0

rank(ΩI) = n− s,
(8.1)

where ΩI contains the rows of Ω with indices in I.

Here, we propose a new dictionary training algorithm for the orthogo-
nal case (described in Chapter 7), inspired from the cosparse DL method
from [56]. The combination of techniques from both the sparse and cosparse
approaches is the key to better representations and is possible due to the
special characteristics induced by orthogonality.

The chapter is structured as follows: Section 8.2 describes our new cosparse
orthonormal block training algorithm and its relation to the synthesis ver-
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Algorithm 15: 1ONB-COSP

Data: signals set Y and target sparsity s
Result: dictionary Q and sparse representations X

1 Initialization: Let Q = U where UΣV T = SVD(Y )
2 Compute X = QTY and select the largest s entries of each column
3 foreach atom i in dictionary Q do
4 Extract: I = {j|Xi,j = 0}
5 Refine: solve (8.2) to get qi
6 Update: X = QTY and select the largest s entries of each column
7 Restructure: apply Procrustes approximation (7.6) on Y and X

to orthogonalize Q

sion, followed by numerical results supporting its dictionary recovery and
representation error improvements in Section 8.3.

8.2 Cosparse Orthonormal Block Training

We start with the simple remark that the sparse (4.1) and cosparse (8.1)
representation problems have the same optimal error if the dictionary is or-
thogonal. Indeed, given D orthogonal, the problem (4.1) is solved by com-
puting x = DTy and keeping only the largest (in absolute value) s elements,
the others being forced to zero. This holds because the objective of (4.1) is
equal to ‖DTy − x‖22. For the cosparse problem (8.1), the atoms are now
rows instead of columns, so the dictionary is Ω = DT . The two problems are
connected via the relation DT z = x. The n − s atoms that are orthogonal
on z are those corresponding to the positions of zeros in x. Otherwise said,
the problem (8.1) is solved by computing DTy and setting to zero the n− s
smallest elements (in absolute value). We work on complementary subspaces,
but the final result is the same.

8.2.1 Building Cosparse Orthonormal Blocks

UONB [33] and especially SBO [34] use 1ONB (Algorithm 13 from Chapter
7) to build one orthonormal block. Using the idea behind 1ONB and con-
cepts inspired from cosparse DL, we propose a new method for training an
orthogonal block, described in Algorithm 15. Since the sparse and cosparse
models are interchangeable in the orthogonal case, as explained above, we
adopt an idea used for atom update in the cosparse K-SVD algorithm [56].
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Algorithm 16: 1ONB-COSP+

Data: signals set Y , sparsity s, rounds R
Result: dictionary Q and sparse representations X

1 {Q,X} = 1ONB-COSP(Y, s)
2 for r ← 1 to R do
3 Update: X = QTY and select the largest s entries of each column
4 Approximation: apply Procrustes orthogonalization (7.6) on Y

and X to approximate Q

Denoting Q the orthogonal dictionary, an atom qi is optimized by solving the
problem

minimize
qi

‖qTi YI‖22
subject to ‖qi‖2 = 1,

(8.2)

where I is the set of signals that do not use the atom qi in their representation
(or, taking the cosparse view, on which qi should ideally be orthogonal). The
solution of (8.2) is the singular vector corresponding to the smallest singular
value of YI . (Note the duality with sparse K-SVD, where the singular vector
of the largest singular value was involved.)

We give now a step-by-step description of Algorithm 15, named 1ONB-
COSP in the sequel. The initialization of the orthoblock Q in step 1 and
the computation of the sparse representations X in step 2 are done the same
way as described in Algorithm 13. Following the general approach for atom
optimization in DL, we sequentially update each atom qi from Q in the loop
from step 3, using the atom refinement solution described in (8.2): first we
extract the signals that are not using the current atom i in their represen-
tation (step 4) and then we proceed to refine qi in step 5 by solving (8.2).
We found that updating the representations immediately after the change in
atom qi significantly improves the final representation error. So, in step 6 we
create new representations with the updated dictionary Q the same way we
did in step 2. Note that, with the replacement of qi, the dictionary Q is no
longer orthogonal and it is important to use it unstructured when updating
the representations in step 6. We restructure Q as an orthogonal matrix
right before proceeding to the next atom update by applying (7.6) in step
7. Numerical simulations showed that it is better to use the old representa-
tions built in step 6 in the next atom update iteration instead of computing
new ones with the restructured dictionary from step 7, although this may be
counterintuitive.

Updating each individual atom at a time (step 3) shows an increased
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complexity of 1ONB-COSP when compared to 1ONB that updates the en-
tire dictionary at once. This might partly explain why 1ONB needs a few
refinement rounds (e.g. R = 5 or R = 6 in step 2) until error improvement
stalls [34], whereas for 1ONB-COSP our simulations showed that a single re-
finement of each atom is enough and repeating the dictionary training steps
3–7 does not improve the final quality of the orthoblock Q.

We also found that further error improvement appears if, as described in
Algorithm 16, 1ONB-COSP (step 1) is followed by R 1ONB training rounds
(steps 2–4). We denote 1ONB-COSP+ this succession of algorithms. On
the contrary, running 1ONB first and then performing 1ONB-COSP did not
show any improvement in the end result.

8.3 Results and Performance

We present numerical results indicating the quality improvements when us-
ing the cosparse approach. First we show the benefits of 1ONB-COSP and
1ONB-COSP+ for the dictionary recovery and the sparse image represen-
tation problems when using a single orthogonal block. Then, we present
its impact on the algorithms that make use of it for DL, when the dictio-
nary is a union of orthogonal blocks. We always used identical input and
parametrization (where applicable) when comparing methods.

8.3.1 Dictionary Recovery

The dictionary recovery experiment (see Section 2.5.1) had to be adapted
to the dimensions of the orthogonal dictionary. We started with a random
square matrix of dimension p = 20 on which we ran the SVD decomposition
and used the left orthogonal transformation matrix as the original dictionary.
We then generated a data set Y of m = 600 columns, each obtained as a
linear combination of s ∈ {3, 4, 5} randomly chosen atoms. We ran 1ONB
and 1ONB-COSP+ with R = 5 rounds (enough to converge as described
in [34]) on the new signal set and compared the original dictionary with the
learned dictionary. The algorithms were provided with the original sparsity
level s that was used in generating the clean data set Y . Table 8.1 shows
a big improvement in the percentages of recovered atoms, averaged over 50
runs. 1ONB-COSP is vastly superior to 1ONB. 1ONB-COSP+ improves the
results where there is room for improvement, especially for larger s.
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Table 8.1: Percentage of recovered atoms

s Method
SNR

10 20 30 ∞

3
1ONB 46.7 53.5 57.4 53.8

1ONB-COSP 99.9 100.0 100.0 91.9
1ONB-COSP+ 100.0 100.0 100.0 99.4

4
1ONB 15.5 30.9 28.9 28.8

1ONB-COSP 96.7 99.1 98.8 89.8
1ONB-COSP+ 98.2 99.8 99.4 97.8

5
1ONB 2.3 9.1 12.6 11.1

1ONB-COSP 85.4 91.5 95.8 90.2
1ONB-COSP+ 91.5 95.2 98.0 95.8

8.3.2 Dictionary Learning

We generated our experimental data as described in Section 2.5.2.

In Figure 8.1 we present the average representation error over 100 runs
for varying signals set sizes when using orthogonal blocks of dimension p =
64 (n = 64 atoms) with a sparsity constraint of s = 8. We used R = 5
rounds for 1ONB and 1ONB-COSP+. Both cosparse methods are consistent
in providing a better dictionary than plain 1ONB. More so, at the cost of
an increase in execution time, 1ONB-COSP+ performs better than 1ONB-
COSP.

Table 8.2 shows the final errors after running a single round of tests on p =
64 sized dictionary blocks with varied sparsity constraints s ∈ {4, 6, 8, 10, 12}
and different training set sizes (m ∈ {512, 1024, 1536, 2048}) for each sparsity
level. Except for two results (s = 12), 1ONB-COSP presents an improvement
in approximation error over 1ONB, while 1ONB-COSP+ always outperforms
both methods.

Figure 8.2 shows the sparsity impact on the representations obtained with
Algorithm 15. Using the same dimensions for the input data as the ones used
in Figure 8.1 we changed the sparsity constraint from s = 4 up to s = 12
for 1ONB-COSP while keeping the same training signal set. We can see
a natural increase in error as the number of signals in the data set grows.
Also visible is the clear difference in representation quality as the sparsity
constraint is loosened.
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Table 8.2: Final errors for sparse and cosparse algorithms

s m 1ONB COSP COSP+

4

512 0.0288 0.0280 0.0268
1024 0.0292 0.0283 0.0275
1536 0.0293 0.0278 0.0276
2048 0.0304 0.0295 0.0293

6

512 0.0239 0.0236 0.0217
1024 0.0243 0.0231 0.0230
1536 0.0245 0.0243 0.0230
2048 0.0257 0.0244 0.0242

8

512 0.0204 0.0185 0.0183
1024 0.0211 0.0198 0.0189
1536 0.0209 0.0196 0.0192
2048 0.0224 0.0223 0.0205

10

512 0.0176 0.0158 0.0155
1024 0.0183 0.0171 0.0167
1536 0.0183 0.0171 0.0168
2048 0.0195 0.0191 0.0184

12

512 0.0152 0.0151 0.0139
1024 0.0159 0.0173 0.0154
1536 0.0160 0.0163 0.0153
2048 0.0170 0.0165 0.0160

8.3.3 Unions of Orthonormal Bases with Cosparse Train-
ing

Algorithms that train overcomplete dictionaries as a union of orthonormal
bases (such as UONB [33] and SBO [34]) use 1ONB to build one orthonormal
block. This type of methods were discussed in Chapter 7.

To show how our cosparse approach behaves we substitute 1ONB with
1ONB-COSP or 1ONB-COSP+ in the dictionary initialization and update
stage of SBO and UONB, without any other algorithmic modifications. Our
goal here is to improve the performance of SBO and UONB, for a compar-
ison with generic DL methods such as AK-SVD we direct the reader to the
numeric simulations from [34].

Following the comparison tests from [34] we used M = 3 orthobases for
UONB and M = 16 for SBO (this makes representation speed similar for the
two methods). The signals have size p = 64, being generated from images
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as described in Section 2.5.2. We impose a sparsity constraint s = 10 and
a number of R = 5 training rounds for 1ONB and 1ONB-COSP+. We ran
multiple tests on varying signals set sizes from m = 4096 to m = 8192. We
plot the results in figures 8.3 and 8.4.

Figure 8.3 shows the average representation error over 10 runs when per-
forming SBO with 1ONB, 1ONB-COSP and 1ONB-COSP+. Because SBO
makes use of 1ONB training during initialization and also during the main
iterations, the approximation improvement is consistent with the results seen
in Figure 8.1.

Using the same average as described in Figure 8.3, we show the perfor-
mance of UONB with all three 1ONB variants in Figure 8.4. Because 1ONB
is only used at initialization the cosparse variants have less impact on the
overall performance of UONB.

8.4 Conclusions

In this chapter we have presented a new algorithm for learning orthogonal
dictionary blocks in a cosparse fashion. The new algorithm shows significant
improvements at recovering dictionary atoms and provides a smaller repre-
sentation error when tested on synthetic and empirical data. We also show
that the improvement in representation holds when applying the cosparse
algorithms within existing methods that create the dictionary as a union
orthonormal bases.
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Chapter 9

Composite Dictionaries

9.1 Introduction

This chapter studies dictionary learning for signal denoising when using a
special class of dictionaries called composite dictionaries. Given a set of
signals Y that has been perturbed by a standard white gaussian noise Z,
with noise level σ, and denoting with Y c the unknown clean signals set that
we want to recover, we have

Y = Y c + σZ. (9.1)

If we rewrite the approximation from (5.1) as

Y = DX +R, (9.2)

where R is the residual denoted as the error matrix E in (5.1), the goal of a
DL denoising algorithm is to model Y c such that the residual R from (9.2)
matches the added noise:

Y c ≈ DX,R ≈ σZ. (9.3)

There are two approaches when choosing the training set for denoising
with DL. The first one uses an external signals set [57] that results in a
versatile set of representation atoms making the dictionary suited for a larger
class of signals with the risk of running in to cases where none of the atoms
are able to properly fit a specific model. The second approach focusses on
training the dictionary with the same internal set [58] (or similar sets) of
signals as the ones we want to denoise. This has the advantage of giving
sharper results as the atoms are more specialized with the downside of a
rather poor performance at high noise levels where the noise can become a
participating part of the modeling atoms [59].
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A recent trend in the DL community [60] [61] is taking advantage of
both worlds by creating a dictionary following each training approach and
merging the two into a larger dictionary with which the actual denoising
is performed. First a dictionary is obtained from an external training set,
using an algorithm such as K-SVD [29], and then for each new signal set
an extra dedicated dictionary is trained and composed with the former [61].
Then, the new signal set is sparsely represented by selecting atoms from
both dictionaries through algorithms such as orthogonal matching pursuit
(OMP) [62]. These composite dictionaries have been shown to outperform
the vanilla approach [61]. The disadvantage with this way of doing things is
the loss of generality of the DL algorithms due to the fact that the composite
representations are now tightly coupled to the second specialized dictionary.
This is not a problem for applications such as image denoising but would be,
for example, suboptimal for compression.

Here, we study the composite approach when applied to the class of dic-
tionaries structured as a union of orthonormal basis (as described in Chapter
7) and provide new algorithms based on SBO [34] that improve the quality
of the denoised signals while also providing smaller execution times.

The chapter is structured as follows: in Section 9.2 we present the strategy
of applying dictionary composition to structured dictionaries and explain the
resulting algorithms, while in Section 9.3 we provide numeric simulations to
support our results, with conclusions in Section 9.4.

9.2 Composite Structured Dictionaries

As described in Chapter 7, SBO performs dictionary refinement indepen-
dently on each block through 1ONB [33]. Even though SBO has larger
memory requirements due to an increased dictionary size, its advantage over
AK-SVD is the training and represntation speed while maintaining a compet-
itive approximation quality. To give a general impression of the differences
between the two we refer the reader to Table 7.2 and Table 7.3.

9.2.1 Composing SBO with 1ONB

Our first proposal for denoising with composite structured dictionaries is to
mix an SBO trained external dictionary with a specific orthoblock trained
with 1ONB on the noisy set. We term this method SBO-C1 and describe it
in Algorithm 17.

We first use SBO to train the external dictionary E on the training set Y t

and 1ONB to train the internal dictionary F on the noisy set Y (steps 1 and
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Algorithm 17: SBO-C1

Data: training signals set Y t, noisy signals Y
Result: denoised signals Y c

1 Train generic dictionary E = SBO(Y t)
2 Train orthoblock with noisy set: F = 1ONB(Y )

3 Assign each column k from Y to one orthobase Q
(k)
E from E following

(7.5)
4 foreach signal k from Y do

5 Compose: Dc = [Q
(k)
E F ]

6 Represent: Xk = OMP(Dc, Yk)
7 Denoise: Y c

k = DcXk

2). Next we allocate each signal from Y to a block from E (step 3). We denote
a column k from matrix Y with Yk and the SBO base it has been assigned
to with Q

(k)
E . The focal point in the algorithm is composing a dedicated

dictionary Dc for each signal made out of its assigned block Q
(k)
E and the

internal orthoblock F (step 5). With the composite dictionary we proceed to
compute the sparse representations Xk using the OMP algorithm in step 6.
The factorization of the composite dictionary and the representations from
step 7 provides us with the denoised signal Y c

k as described around Equation
(9.3).

The simplistic 1ONB training of the internal dictionary leads to mediocre
denoising results (as described in Section 9.3), but it is worth mentioning that
it manages to perform better than the composite AK-SVD algorithm when
the sparsity constraint is loosened such that s >

√
p, where p is the signal

size. In terms of speed, it offers the fastest dictionary training phase (steps 1
and 2), but representation and denoising (steps 6 and 7) take just as long as
it would with an identically sized dictionary trained with plain or composite
AK-SVD.

9.2.2 Composite SBO

A natural step towards improving the representation quality of SBO-C1 is
to expand the internal dictionary to more than one orthoblock. This can
be achieved by performing another SBO session, this time on the noisy set,
in order to create an extended internal dictionary that is still smaller than
the external one. We keep the internal dictionary small in order to avoid
modelling the noise as described in the introduction. Our experiments have
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Algorithm 18: SBO-C

Data: training signals set Y t, noisy signals Y
Result: denoised signals Y c

1 Train external dictionary E = SBO(Y t)
2 Train internal dictionary F = SBO(Y )

3 Assign each column k from Y to one orthobase Q
(k)
E from E and one

orthobase Q
(k)
F from F following (7.5)

4 foreach signal k from Y do

5 Compose: Dc = [Q
(k)
E Q

(k)
F ]

6 Represent: Xk = OMP(Dc, Yk)
7 Denoise: Y c

k = DcXk

shown good results with keeping a size of half the number of bases from the
external dictionary. This algorithm is a direct corespondent of the composite
AK-SVD method. We call it SBO-C and describe it in Algorithm 18.

In the new algorithm, step 2 is modified in order to train an internal SBO
dictionary instead of a single 1ONB base. This also affects step 3 where an
extra assignment operation needs to be performed for the internal dictionary.
We denote with Q

(k)
F the base from the internal dictionary assigned to signal k

from the noisy set Y . The composed dictionary (step 5) maintains its size but
its SBO internal dictionary component leads to a more specialized orthobase
Q

(k)
F and provides sharper results. Representation and denoising (steps 6–7)

do not take advantage of the composite structure of the dictionary and so
they perform the same as they would with plain or composite AK-SVD.

Even though the training stage (steps 1–3) has an increased complexity
due to the second SBO training round, it is still a lot faster than plain and
composite AK-SVD which suffer from large execution times as shown in Table
7.2.

9.2.3 Hybrids

In our pursuit of improving denoising performance, we also studied the case
of hybrid dictionary compositions between AK-SVD and SBO.

One option is to use SBO as the external dictionary and train an AK-
SVD block instead of the 1ONB base in Algorithm 17. The rest of SBO-C1
remains the same with the observation that the composite dictionary is now
done with F learned from AK-SVD in step 5. We found that preserving
the block size for the AK-SVD dictionary is enough to outperform SBO-C1.
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Algorithm 19: Composite AK-SVD with SBO

Data: training signals set Y t, noisy signals Y
Result: denoised signals Y c

1 Train external dictionary E = AK-SVD(Y t)
2 Train internal dictionary F = SBO(Y )

3 Assign each column k from Y to one orthobase Q
(k)
F from F following

(7.5)
4 foreach signal k from Y do

5 Compose: Dc = [E Q
(k)
F ]

6 Represent: Xk = OMP(Dc, Yk)
7 Denoise: Y c

k = DcXk

This also helps prevent noise modelling and keeps a minimal execution time.
The effects of increasing the dictionary size can be observed in the first line
of Table 7.2.

Reversing the roles, we can train AK-SVD on the external data set and
then use SBO on the internal noisy sets as described in Algorithm 19.

This way the expensive AK-SVD training is performed on the large train-
ing set (step 1) and SBO on the small noisy set (step 2). The orthobase
assignment needs to be performed only on the internal dictionary in step 3
resulting in a specialized orthobase Q

(k)
F as described in Section 9.2.2. The

composed dictionary is then made of the AK-SVD external dictionary and
the assigned internal orthobase (step 5). Representation (step 6) and de-
noising (step 7) perform the same steps as former algorithms and have an
identical execution cost as plain or composite AK-SVD.

Algorithm 19 would outperform a composite AK-SVD solution in an
online denoising scenario. External training, representation and denoising
would be identical, but the internal training for the hybrid would perform
much faster in production, with an efficient SBO implementation handling
incoming noisy data instead of another AK-SVD instance.

9.3 Results and Performance

Our denoising experiments were performed on images from the USC-SIPI [35]
database. For the training set we used multiple grayscale images normalized
and organized into 8 × 8 random patches. The noisy set was built in the
same way from a different image to which we added white gaussian noise in
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Table 9.1: Denoising with n = 64 + 64 and s = 4

N SBO SBO-C1 SBO-C AK AK-C S-AK AK-S
10 0.0514 0.0498 0.0481 0.0473 0.0462 0.0465 0.0467
20 0.0490 0.0473 0.0439 0.0452 0.0441 0.0435 0.0427
30 0.0488 0.0468 0.0434 0.0449 0.0439 0.0434 0.0421
40 0.0487 0.0468 0.0434 0.0450 0.0439 0.0433 0.0423
50 0.0491 0.0468 0.0435 0.0450 0.0438 0.0433 0.0422

Table 9.2: Denoising with n = 64 + 64 and s = 8

N SBO SBO-C1 SBO-C AK AK-C S-AK AK-S
10 0.0441 0.0421 0.0412 0.0401 0.0395 0.0403 0.0402
20 0.0392 0.0363 0.0339 0.0357 0.0355 0.0341 0.0329
30 0.0389 0.0358 0.0333 0.0352 0.0350 0.0335 0.0322
40 0.0388 0.0356 0.0330 0.0350 0.0350 0.0334 0.0322
50 0.0386 0.0355 0.0330 0.0353 0.0351 0.0335 0.0321

order to obtain the desired singnal to noise ratio (SNR). Denoising perfor-
mance is expressed as the RMSE (2.9) between the clean image Y c and the
DX factorization result of steps 7 from the algorithms in Section 9.2 (see
description around Equation (9.3)).

We shorten AK-SVD with AK, composite AK-SVD with AK-C and the
hybrid variants with S-AK where we used SBO as the external dictionary
and AK-SVD as the internal one and vice-versa as AK-S.

9.3.1 Composite Dictionaries with n = 64 + 64

The first series of experiments constraints each composite dictionary to a
fixed size of n = 128 with 64 atoms from the external dictionary and another
64 atoms from the internal dictionary.

In Tables 9.1–9.3 we present the results of denoising at s = {4, 8, 12}
sparsity constraints. We used a set of m = 8192 signals randomly picked
from 9 images for training the external dictionaries. The internal set was
built from a single noisy image at different N = {10, 20, 30, 40, 50} dB SNR
levels. SBO was used with K = 16 bases when training external dictionaries
and K = 8 when training internal dictionaries. 1ONB was always ran for
R = 5 rounds as that is sufficient according to [34]. AK-SVD trained external
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Figure 9.1: Denoising with n = 64 + 64 and s = 10.
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Table 9.3: Denoising with n = 64 + 64 and s = 12

N SBO SBO-C1 SBO-C AK AK-C S-AK AK-S
10 0.0400 0.0380 0.0377 0.0364 0.0361 0.0372 0.0371
20 0.0328 0.0291 0.0275 0.0303 0.0303 0.0284 0.0272
30 0.0319 0.0281 0.0262 0.0293 0.0297 0.0275 0.0258
40 0.0318 0.0279 0.0261 0.0293 0.0295 0.0273 0.0258
50 0.0317 0.0280 0.0260 0.0294 0.0297 0.0271 0.0259

and internal dictionaries with n = 64 atoms and n = 128 for the classic non-
composite version. We followed the dictionary sizes used to compare the two
methods in [34].

As expected, when the sparsity constraint is loosened the denoising per-
formance improves. The tables also show that the methods have a consistent
performance across sparsity constraints and noise levels. The hybrid version
AK-S is the winner in most cases except for the very noisy one where com-
posite AK-SVD takes the lead. Even then we can see that the difference is
not significant and both hybrid versions come in close in second place. If, on
the other hand, speed requirements might justify a small performance com-
promise SBO-C is the best choice due to its small execution time at less than
3% performance loss when compared to AK-S. SBO-C is also more than 60x
faster than AK-S as can be seen from tables 7.2 and 7.3. At higher sparsity
targets, such as the ones from Tables 9.2 and 9.3, even SBO-C1 might pro-
vide a good option being the fastest method with a 10% performance penalty.
Another interesting observation is that, except for the 10dB case, SBO-C is
outperforming composite AK-SVD.

In Figure 9.1 we show the denoising performance evolution of each method
as the SNR drops. For this experiment we used the same data as that from the
tables above and changed the sparsity to be s = 10. AK-S is a clear winner
while plain SBO is the poorest denoiser. AK-SVD, AK-C and SBO-C1 are
somewhere close in the middle presenting similar performances. Naturally,
SBO-C outperforms the hybrid S-AK due to a larger internal dictionary.

9.3.2 Composite Dictionaries with n = 128 + 64

We present here a second experiment where we increased the size of the
external dictionaries to n = 128 and maintained the internals at n = 64
leading to a fixed composite dictionary size of n = 192. This experiment
was aimed at comparing the plain and composite AK-SVD variants with our
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Table 9.4: Denoising with n = 128 + 64 dictionaries

s N SBO-C AK AK-C S-AK AK-S

4
10 0.0480 0.0462 0.0454 0.0466 0.0455
20 0.0440 0.0439 0.0431 0.0436 0.0413
30 0.0435 0.0437 0.0429 0.0433 0.0410

8
10 0.0412 0.0388 0.0385 0.0403 0.0391
20 0.0339 0.0343 0.0341 0.0342 0.0316
30 0.0331 0.0337 0.0336 0.0335 0.0309

12
10 0.0378 0.0355 0.0354 0.0371 0.0360
20 0.0273 0.0282 0.0286 0.0282 0.0257
30 0.0262 0.0273 0.0279 0.0273 0.0244

hybrid proposals. We used the same data as in our first experiment, the
only change here is the dictionary size. For reference we also ran SBO-C on
the same input data even though its composite dictionary size is limited to
n = 128.

Table 9.4 is structured the same way as Tables 9.1–9.3 with a reduced
number of noise levels N = {10, 20, 30}dB because higher SNRs showed
identical results to N = 30dB. As we can see AK-C is still the best performer
in the worst case scenario, but AK-S is coming close in second place. The
rest of the cases present AK-S as the clear winner at all sparsity levels. It
is interesting to see that SBO-C is the runner-up for larger sparsity values
(s = {8, 12}) with AK-C taking second place at s = 4.

Figure 9.2 shows the denoising performance as the SNR improves. We
can clearly see here that AK-S is maintaining its first place position with
SBO-C coming in second and AK, AK-C and AK-S fighting for third place.
We can also see the plateau past the 30dB mark that allowed us to resume
Table 9.4 to the three SNR levels.

9.4 Conclusions

In this chapter we studied and proposed 4 new algorithms for denoising using
composite dictionaries structured as a union of orthonormal bases. SBO-C1
is the fastest algorithm providing a composition between SBO dictionaries
and 1ONB blocks. SBO-C is an extended version that instead composes two
SBO dictionaries offering improved denoising results while being more than
60x faster than the best performing algorithm with a penalty on the denoising
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quality of less than 3%. We also investigated the hybrid case where we mix
a generic dictionary built with AK-SVD with a structured SBO dictionary.
The hybrid case provided the best results in our experiments performed on
grayscale images with a significant impact on the execution time due to the
use of AK-SVD.
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Chapter 10

Our Research

This chapter lists the articles we wrote on the subject presented in this thesis,
followed by a brief description of individual contributions and the novel end
results of our activity. At the end we conclude with future research.

10.1 Publications

Journal articles:

1. P. Irofti, Efficient Parallel Implementation for Single Block Orthogonal
Dictionary Learning, to appear in Journal of Control Engineering and
Applied Informatics, 2015, 1–8 (ISI journal with 2015 impact factor
0.537)

2. P. Irofti, Efficient Dictionary Learning Implementation on the GPU
using OpenCL, to appear in U.P.B. Scientific Bulletin, series C, 2015,
1–12

Conference articles:

1. P. Irofti and B. Dumitrescu, GPU parallel implementation of the ap-
proximate K-SVD algorithm using OpenCL, in 22nd European Signal
Processing Conference, 2014, 271–275 (indexed in ISI Proceedings)

2. P. Irofti and B. Dumitrescu, Overcomplete Dictionary Design: the Im-
pact of the Sparse Representation Algorithm, in The 20th International
Conference on Control Systems and Computer Science, 2015, 1–8 (in-
dexed in ISI Proceedings)

3. P. Irofti and B. Dumitrescu, Cosparse Dictionary Learning for the Or-
thogonal Case, 19th International Conference on System Theory, Con-
trol and Computing, 2015, 343–347 (indexed in ISI Proceedings)
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4. P. Irofti, Sparse Denoising with Learned Composite Structured Dictio-
naries, 19th International Conference on System Theory, Control and
Computing, 2015, 331–336 (indexed in ISI Proceedings)

Under review:

1. P. Irofti and B. Dumitrescu, Overcomplete Dictionary Learning with
Jacobi Atom Updates, 2015, http://arxiv.org/abs/1509.05054

10.2 Detailed Contributions

All of my research activity was guided by professor Bogdan Dumitrescu
(B.D.). Following, I will list the contributions brought on by me in each
article.

Efficient Parallel Implementation for Single Block Orthogonal Dic-
tionary Learning At the suggestion of B.D. I implemented the SBO al-
gorithm in OpenCL. The idea to add more than one orthonormal dictio-
nary blocks at each iteration was mine. I performed the experiments and
wrote [63].

Overcomplete Dictionary Learning with Jacobi Atom Updates Af-
ter our results with K-SVD from [52], I had the idea to generalize the atom
update strategy and apply it to other DL algorithms. I implemented the
algorithms and performed the experiments; the article [64] was written by
B.D. and I.

Efficient Dictionary Learning Implementation on the GPU using
OpenCL The OpenCL DL framework was designed and implemented by
me; [65] was written by me.

GPU parallel implementation of the approximate K-SVD algo-
rithm using OpenCL The idea to parallelize K-SVD was given by B.D.
We both worked on getting a feasible parallel atom update stage. The imple-
mentation and experiments were done by me and [52] was written by B.D.
and I.

Overcomplete Dictionary Design: the Impact of the Sparse Rep-
resentation Algorithm B.D. had idea to compare sparse representations
algorithms and their impact on the dictionary update stage. I came up with
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the new POLS algorithm. The implementations were done by me and B.D.
and the experiments were performed by me; [66] was written by B.D. and
me.

Cosparse Dictionary Learning for the Orthogonal Case The idea
of applying cosparse DL for orthogonal dictionaries was mine. B.D. helped
with ideas and suggestions about refining the 1ONB-COSP algorithm. The
implementation and experiments were done by me. Both I and B.D. wrote
the article [67].

Sparse Denoising with Learned Composite Structured Dictionaries
The idea of performing denoising with composite dictionaries was mine. I
implemented the algorithms, performed the experiments, and wrote [68].

10.3 Original End Results

In this section we list the finite novel products of our research.

• Theory:

– Jacobi Atom Update framework for dictionary design that reduces
representation error, improves execution times and permits full
parallelism (Chapter 5)

– progress in the atom update stage is masked when using the same
sparse representation algorithm (Chapter 6)

– using a more involved sparse representation algorithm (such as
POLS) when performing DL and then switching to a faster method
(like OMP) when doing representation leads to improved error
minimization and execution performance (Chapter 6)

• Algorithms:

– new sparse representation algorithm POLS that leads to better
results and smoother convergence (Chapters 4 and 6)

– new parallel dictionary update algorithms dervied from the JAU
framework: PAK-SVD, P-SGK and P-NSGK (Chapters 5 and 6)

– new parallel P-SBO algorithm for dictionaries structured as a
union of orthonormal basis that improves the final error and the
execution times (Chapter 7)
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– new cosparse algorithms 1ONB-COSP and 1ONB-COSP+ that
significantly improve dictionary recovery and reduce representa-
tion when used as stand-alone and also within SBO and UONB
(Chapter 8)

– new denoising algorithms using composite dictionaries SBO-C1,
SBO-C, S-AK and AK-S that provide sharper results with faster
execution times (Chapter 9)

• Software:

– Parallel dictionary learning library for GPUs using OpenCL that
includes all the parallel algorithms for generic and structured dic-
tionaries listed above (implementation detailed in the chapters
with the corresponding algorithms)

– Dictionary Learning library for the popular algorithms from the
field implemented in C for CPUs

– Matlab software for image denoising using composite dictionaries

10.4 Future Research

We are currently interested in finding new methods that take advantage
of the orthogonal block cosparse training when learning multiple orthoblock
dictionaries, researching ways in which we can adapt the representation stage
to profit from the structure of composite dictionaries, and refining our parallel
implementations as new OpenCL numerical libraries are made available.

The sparse representation field is relatively new with lots of hidden trea-
sures still waiting to be found by current and future researchers. In the future
we plan to take part and make the best of this quest.
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