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Abstract—In the sparse representation field recent studies
using composite dictionaries have shown encouraging results in
performing noise removal. In this paper we look at dictionary
composition in the particular case of dictionaries structured as
a union of orthonormal bases. Our study focuses on denoising
performance, providing new algorithms that outperform existing
solutions, and also speed, resulting in different algorithms that
execute a lot faster with a negligible denoising penalty.

Index Terms—sparse representation, orthogonal blocks, dictio-
nary design, denoising

I. INTRODUCTION

The sparse representation field has seen a lot of interest in
the last decade with numerous signal processing applications
in various domains such as compression, detection, recovery
and denoising. In this article we focus on the algorithms
dedicated to noise removal through dictionary learning (DL).

Most dictionary methods attack the learning problem [1],
[2] through an iterative shrinkage process that alternatively
improves the representations and the dictionary by fixing
one while the other is refined. Given a training signal set
Y ∈ Rp×m this dual optimization problem can be formally
expressed as:

minimize
D,X

‖Y −DX‖2F

subject to ‖X(i)‖0 ≤ s, ∀i
(1)

where D ∈ Rp×n is the dictionary whose columns are also
called atoms, X ∈ Rn×m are the sparse representations and
X(i) are the columns from X , each bound to have no more
than s non-zero elements. We denote with ‖.‖F the Frobenius
norm and with ‖.‖0 the total number of non-zero entries from
a given vector (also known as the l0 norm). Solving this leads
to an approximation of the form:

Y = DX +R (2)

where we denote the residual as R.
Given a set of signals Y that has been perturbed by a

standard white gaussian noise Z, with noise level σ, and
denoting with Yc the unknown clean signals set that we want
to recover, we have:

Y = Yc + σZ (3)

And so, the goal of a DL denoising algorithm is to model Yc
such that the residual R from (2) matches the added noise:

Yc ≈ DX,R ≈ σZ (4)

There are two approaches when choosing the training set for
denoising with DL. The first one uses an external signals set
[3] that results in a versatile set of representation atoms making
the dictionary suited for a larger class of signals with the risk
of running in to cases where none of the atoms are able to
properly fit a specific model. The second approach focusses
on training the dictionary with the same internal set [4] (or
similar sets) of signals as the ones we want to denoise. This has
the advantage of giving sharper results as the atoms are more
specialized with the downside of a rather poor performance at
high noise levels where the noise can become a participating
part of the modeling atoms [5].

A recent trend in the DL community [6] [7] is taking
advantage of both worlds by creating a dictionary following
each training approach and merging the two into a larger
dictionary with which the actual denoising is performed. First
a dictionary is obtained from an external training set, using an
algorithm such as K-SVD [8], and then for each new signal
set an extra dedicated dictionary is trained and composed
with the former [7]. Then the new signal set is sparsely
represented by selecting atoms from both dictionaries through
algorithms such as orthogonal matching pursuit (OMP) [9].
These composite dictionaries have been shown to outperform
the vanilla approach [7]. The disadvantage with this way of
doing things is the loss of generality of the DL algorithms due
to the fact that the composite representations are now tightly
coupled to the second specialized dictionary which is not a
problem for applications such as image denoising but would
be, for example, suboptimal for compression. The algorithmic
and implementation details of K-SVD and its approximate
version AK-SVD can be found in [10].

In this paper we study the composite approach when applied
to the class of dictionaries structured as a union of orthonormal
basis (UONB) [11]:

minimize
D,X

‖Y − [Q1Q2 . . . QK ]X‖2F

subject to ‖X(i)‖0 ≤ s, ∀i
QT

j Qj = Ip, 1 ≤ j ≤ K

(5)



Algorithm 1: 1ONB

Data: signals set Y ,
target sparsity s,
number of rounds R

Result: dictionary Q and sparse representations X

1 Initialization: Let Q = U where UΣV T = SVD(Y )
2 for r ← 1 to R do
3 Update: X = QTY and select the largest s entries of

each column
4 Approximation: apply Procrustes orthogonalization

(7) on Y and X to approximate Q

where we denote with Q a single orthonormal base and with K
the total number of bases in the dictionary; and provide new
algorithms based on the single orthonormal block algorithm
(SBO) [12] that improve the quality of the denoised signals
while also providing smaller execution times.

The manuscript is structured as follows: in section II we
present the strategy of applying dictionary composition to
structured dictionaries and explain the resulting algorithms,
while in section III we provide numeric simulations to support
our results, with conclusions and future research in section IV.

II. COMPOSITE STRUCTURED DICTIONARIES

SBO performs dictionary refinement independently on each
block through 1ONB [11] depicted in algorithm 1.

The dictionary is initialized in step 1 with an orthonormal
matrix created from the singular value decomposition (SVD)
of the training set Y . Then, keeping the dictionary fixed,
the representations are computed in step 3 though hard-
thresholding the top s absolute values of the entries of each
column from X . This can be implemented through a partial
selection algorithm:

x = SELECT (QT y, s) (6)

where x is the s sparse representation of signal y through base
Q. Fixing the representations, the dictionary is refined in step
4 by performing the following orthogonal approximation of X
and Y :

P = Y XT

UΣV T = SVD(P )

Q = UV T

(7)

which is known as Procrustes orthogonalization. This process
is repeated R times, where 4–5 iterations have been empiri-
cally shown to be enough [12].

SBO signal representation is performed by choosing a
different single best orthonormal base for representing each
signal from the training set. In order to find the best orthobase
we need to compute the sparse representations x(i) of a signal
y with every orthobase Qi (with i = 1 . . .K) from the
dictionary and pick the one where the representation energy
is highest. As shown in [12], computing the energy of the

TABLE I
PAK-SVD PERFORMANCE FOR m = 32768, p = 64, s = 8 AND

K = 100.

n 64 96 128 160 256
tlearn(s) 366.8 396.7 416.5 438.4 642.4
trep(s) 0.3467 0.3753 0.8207 0.5889 2.2436
RMSE 0.0271 0.0246 0.0242 0.0230 0.0216

TABLE II
PARALLEL SBO PERFORMANCE FOR m = 32768, p = 64, s = 8 WITH

K0 = 5 AND R = 6

K 8 16 24 32 64
tlearn(s) 1.8 6.7 12.3 20.9 85.4
trep(s) 0.0020 0.0021 0.0022 0.0021 0.0021
RMSE 0.0268 0.0245 0.0240 0.0238 0.0235

representations suffices because the norm is preserved by the
orthonormal dictionary blocks. And so, we formalize finding
the best representation base j with:

j = argmax
i=1...K

s∑
t=1

|x(i)(t)|2 (8)

where x(i) = SELECT(QT
i y, s) and t iterates the s non-zero

elements of x(i). We then proceed to represent y solely with
the j-th base. This leads to a splitting of the signal set in K
parts corresponding to each orthobase.

Starting with a few initial bases, SBO expands its dictionary
at each iteration by adding a new orthorblock trained through
1ONB on a given percentage of the worst represented signals.
After a new base is created, the signals set is repartitioned
as described earlier around (8) and the entire union is refined
by applying 1ONB on each dictionary block. This expansion
continues until a stopping criterion is met.

Even though SBO has larger memory requirements due to
an increased dictionary size, its advantage over AK-SVD is
the training and represntation speed while maintaining a com-
petitive approximation quality. To give a general impression
of the differences between the two we compared their efficient
parallel GPU implementations termed Parallel SBO (P-SBO)
and Parallel AK-SVD (PAK-SVD) [13]. We measured the
time it takes to perform dictionary learning (tlearn), the sparse
representation time (trep) and the quality of the representations
measured as the root mean squared error (RMSE). Dictionary
sizes for both methods were picked in accordance with the
comparison tests performed by the authors of SBO [12]. The
results for PAK-SVD running with full atom parallelism on a
training set of m signals of size p with a sparsity of s for K
iterations and varied dictionary sizes n can be seen in table
I. We performed training on the same data set with P-SBO
starting with K0 initial bases with R 1ONB rounds and varied
the dictionary size K. The results are shown in table II. We can
see that there is a big difference between their execution time
while, indeed, the representation quality is about the same.



Algorithm 2: SBO-C1

Data: training signals set Yt, noisy signals Y
Result: denoised signals Yc

1 Train generic dictionary E = SBO(Yt)
2 Train orthoblock with noisy set: F = 1ONB(Y )

3 Assign each column k from Y to one orthobase Q(k)
E

from E following (8)
4 foreach signal k from Y do
5 Compose: Dc = [Q

(k)
E F ]

6 Represent: X(k) = OMP(Dc, Y (k))
7 Denoise: Yc(k) = DcX(k)

A. Composing SBO with 1ONB

Our first proposal for denoising with composite structured
dictionaries is to mix an SBO trained external dictionary with
a specific orthoblock trained with 1ONB on the noisy set. We
term this method SBO-C1 and describe it in algorithm 2.

We first use SBO to train the external dictionary E on the
training set Yt and 1ONB to train the internal dictionary F on
the noisy set Y (steps 1 and 2). Next we allocate each signal
from Y to a block from E (step 3). We denote a column
k from matrix Y with Y (k) and the SBO base it has been
assigned to with Q

(k)
E . The focal point in the algorithm is

composing a dedicated dictionary Dc for each signal made
out of its assigned block Q(k)

E and the internal orthoblock F
(step 5). With the composite dictionary we proceed to compute
the sparse representations X(k) using the OMP algorithm in
step 6. The factorization of the composite dictionary and the
representations from step 7 provides us with the denoised
signal Yc(k) as described around equation (4).

The simplistic 1ONB training of the internal dictionary
leads to mediocre denoising results (as described in section
III), but it is worth mentioning that it manages to perform
better than the composite AK-SVD algorithm when the spar-
sity constrained is loosened such that s >

√
p. In terms of

speed, it offers the fastest dictionary training phase (steps 1
and 2), but representation and denoising (steps 6 and 7) take
just as long as it would with an identically sized dictionary
trained with plain or composite AK-SVD.

B. Composite SBO

A natural step towards improving the representation quality
of SBO-C1 is to expand the internal dictionary to more than
one orthoblock. This can be achieved by performing another
SBO session, this time on the noisy set, in order to create
an extended internal dictionary that is still smaller than the
external one. We keep the internal dictionary small in order
to avoid modelling the noise as described in the introduction.
Our experiments have shown good results with keeping a size
of half the number of bases from the external dictionary. This
algorithm is a direct corespondent of the composite AK-SVD
method. We call it SBO-C and describe it in algorithm 3.

Algorithm 3: SBO-C

Data: training signals set Yt, noisy signals Y
Result: denoised signals Yc

1 Train external dictionary E = SBO(Yt)
2 Train internal dictionary F = SBO(Y )

3 Assign each column k from Y to one orthobase Q(k)
E

from E and one orthobase Q(k)
F from F following (8)

4 foreach signal k from Y do
5 Compose: Dc = [Q

(k)
E Q

(k)
F ]

6 Represent: X(k) = OMP(Dc, Y (k))
7 Denoise: Yc(k) = DcX(k)

In the new algorithm, step 2 is modified in order to train
an internal SBO dictionary instead of a single 1ONB base.
This also affects step 3 where an extra assignment operation
needs to be performed for the internal dictionary. We denote
with Q

(k)
F the base from the internal dictionary assigned to

signal k from the noisy set Y . The composed dictionary
(step 5) maintains its size but its SBO internal dictionary
component leads to a more specialized orthobase Q

(k)
F and

provides sharper results. Representation and denoising (steps
6–7) do not take advantage of the composite structure of the
dictionary and so they perform the same as they would with
plain or composite AK-SVD.

Even though the training stage (steps 1–3) has an increased
complexity due to the second SBO training round, it is still
a lot faster than plain and composite AK-SVD which suffer
from large execution times as shown in table I.

C. Hybrids

In our pursuit of improving denoising performance, we also
studied the case of hybrid dictionary compositions between
AK-SVD and SBO.

One option is to use SBO as the external dictionary and train
an AK-SVD block instead of the 1ONB base in algorithm
2. The rest of SBO-C1 would remain the same with the
observation that the composite dictionary is now done with
F learned from AK-SVD in step 5. We found that preserving
the block size for the AK-SVD dictionary is enough to
outperform SBO-C1. This also helps prevent noise modelling
and keeps a minimal execution time. The effects of increasing
the dictionary size can be observed in the first line of table I.

Reversing the roles, we can train AK-SVD on the external
data set and then use SBO on the internal noisy sets as
described in algorithm 4.

This way the expensive AK-SVD training is performed
on the large training set (step 1) and SBO on the small
noisy set (step 2). The orthobase assignment needs to be
performed only on the internal dictionary in step 3 resulting in
a specialized orthobase Q(k)

F as described in subsection II-B.
The composed dictionary would then be made of the AK-SVD
external dictionary and the assigned internal orthobase (step
5). Representation (step 6) and denoising (step 7) perform



Algorithm 4: Composite AK-SVD with SBO

Data: training signals set Yt, noisy signals Y
Result: denoised signals Yc

1 Train external dictionary E = AK-SVD(Yt)
2 Train internal dictionary F = SBO(Y )

3 Assign each column k from Y to one orthobase Q(k)
F

from F following (8)
4 foreach signal k from Y do
5 Compose: Dc = [E Q

(k)
F ]

6 Represent: X(k) = OMP(Dc, Y (k))
7 Denoise: Yc(k) = DcX(k)

the same steps as former algorithms and have an identical
execution cost as plain or composite AK-SVD.

Algorithm 4 would outperform a composite AK-SVD so-
lution in an online denoising scenario where external train-
ing, representation and denoising would be identical but the
internal training for the hybrid would perform much faster
in production with an efficient SBO implementation handling
incoming noisy data instead of another AK-SVD instance.

III. RESULTS AND PERFORMANCE

Our denoising experiments were performed on images from
Volume 3 of the USC-SIPI [14] database. For the training
set we picked ten arbitrary grayscale images normalized and
organized into 8× 8 random patches. The noisy set was built
in the same way from a different image to which we added
white gaussian noise in order to obtain the desired singnal to
noise ratio (SNR). Denoising performance is expressed as:

RMSE =
‖Yc −DX‖F√

pm
(9)

where Yc is the clean image and DX is the factorization result
of steps 7 from the algorithms in section II (see description
around equation (4)).

We shorten AK-SVD with AK, composite AK-SVD with
AK-C and the hybrid variants with S-AK where we used SBO
as the external dictionary and AK-SVD as the internal one and
vice-versa as AK-S.

A. Composite dictionaries with n = 64 + 64

The first series of experiments constraints each composite
dictionary to a fixed size of n = 128 with 64 atoms from
the external dictionary and another 64 atoms from the internal
dictionary.

In tables III–V we present the results of denoising at
s = {4, 8, 12} sparsity constraints. We used a set of m = 8192
signals randomly picked from 9 images for training the exter-
nal dictionaries. The internal set was built from a single noisy
image at different N = {10, 20, 30, 40, 50} dB SNR levels.
SBO was used with K = 16 bases when training external
dictionaries and K = 8 when training internal dictionaries.
1ONB was always ran for R = 5 rounds as that is sufficient

TABLE III
DENOISING WITH n = 64 + 64 AND s = 4

N SBO SBO-C1 SBO-C AK AK-C S-AK AK-S
10 0.0514 0.0498 0.0481 0.0473 0.0462 0.0465 0.0467
20 0.0490 0.0473 0.0439 0.0452 0.0441 0.0435 0.0427
30 0.0488 0.0468 0.0434 0.0449 0.0439 0.0434 0.0421
40 0.0487 0.0468 0.0434 0.0450 0.0439 0.0433 0.0423
50 0.0491 0.0468 0.0435 0.0450 0.0438 0.0433 0.0422

TABLE IV
DENOISING WITH n = 64 + 64 AND s = 8

N SBO SBO-C1 SBO-C AK AK-C S-AK AK-S
10 0.0441 0.0421 0.0412 0.0401 0.0395 0.0403 0.0402
20 0.0392 0.0363 0.0339 0.0357 0.0355 0.0341 0.0329
30 0.0389 0.0358 0.0333 0.0352 0.0350 0.0335 0.0322
40 0.0388 0.0356 0.0330 0.0350 0.0350 0.0334 0.0322
50 0.0386 0.0355 0.0330 0.0353 0.0351 0.0335 0.0321

according to [12]. AK-SVD trained external and internal
dictionaries with n = 64 atoms and n = 128 for the classic
non-composite version. We followed the dictionary sizes used
to compare the two methods in [12].

As expected, when the sparsity constraint is loosened the
denoising performance improves. The tables also show that
the methods have a consistent performance across sparsity
constraints and noise levels. The hybrid version AK-S is the
winner in most cases except for the very noisy one where
composite AK-SVD takes the lead. Even then we can see
that the difference is not significant and both hybrid versions
come in close in second place. If, on the other hand, speed
requirements might justify a small performance compromise
SBO-C is the best choice due to its small execution time at less
than 3% performance loss when compared to AK-S. SBO-C
is also more than 60x faster than AK-S as can be seen from
tables I and II. At higher sparsity targets, such as the ones from
tables IV and V, even SBO-C1 might provide a good option
being the fastest method with a 10% performance penalty.
Another interesting observation is that, except for the 10dB
case, SBO-C is outperforming composite AK-SVD.

In figure 1 we show the denoising performance evolution
of each method as the SNR drops. For this experiment we
used the same data as that from the tables above and changed
the sparsity to be s = 10. AK-S is a clear winner while
plain SBO is the poorest denoiser. AK-SVD, AK-C and SBO-
C1 are somewhere close in the middle presenting similar
performances. Naturally, SBO-C outperforms the hybrid S-AK
due to a larger internal dictionary.

B. Composite dictionaries with n = 128 + 64

We present here a second experiment where we increased
the size of the external dictionaries to n = 128 and maintained
the internals at n = 64 leading to a fixed composite dictionary
size of n = 192. This experiment was aimed at comparing
the plain and composite AK-SVD variants with our hybrid



TABLE V
DENOISING WITH n = 64 + 64 AND s = 12

N SBO SBO-C1 SBO-C AK AK-C S-AK AK-S
10 0.0400 0.0380 0.0377 0.0364 0.0361 0.0372 0.0371
20 0.0328 0.0291 0.0275 0.0303 0.0303 0.0284 0.0272
30 0.0319 0.0281 0.0262 0.0293 0.0297 0.0275 0.0258
40 0.0318 0.0279 0.0261 0.0293 0.0295 0.0273 0.0258
50 0.0317 0.0280 0.0260 0.0294 0.0297 0.0271 0.0259
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Fig. 1: Denoising with n = 64 + 64 and s = 10.

proposals. We used the same data as in our first experiment, the
only change here is the dictionary size. For reference we also
ran SBO-C on the same input data even though its composite
dictionary size is limited to n = 128.

Table VI is structured the same way as tables III–V with a
reduced number of noise levels N = {10, 20, 30}dB because
higher SNRs showed identical results to N = 30dB. As we
can see AK-C is still the best performer in the worst case
scenario, but AK-S is coming close in 2nd place. The rest
of the cases present AK-S as the clear winner at all sparsity
levels. It is interesting to see that SBO-C is the 2nd runner up
for larger sparsity values (s = {8, 12}) with AK-C taking the
2nd place at s = 4.

Figure 2 shows the denoising performance as the SNR
improves. We can clearly see here that AK-S is maintaining
its first place position with SBO-C coming in second and AK,
AK-C and AK-S fighting for third place. We can also see the
plateau past the 30dB mark that allowed us to resume table
VI to the three SNR levels.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we studied and proposed 4 new algorithms
for denoising using composite dictionaries structured as a
union of orthonormal bases. SBO-C1 is the fastest algorithm
providing a composition between SBO dictionaries and 1ONB
blocks. SBO-C is an extended version that instead composes
two SBO dictionaries offering improved denoising results
while being more than 60x faster than the best performing
algorithm with a penalty on the denoising quality of less than

TABLE VI
DENOISING WITH n = 128 + 64 DICTIONARIES

s N SBO-C AK AK-C S-AK AK-S

4
10 0.0480 0.0462 0.0454 0.0466 0.0455
20 0.0440 0.0439 0.0431 0.0436 0.0413
30 0.0435 0.0437 0.0429 0.0433 0.0410

8
10 0.0412 0.0388 0.0385 0.0403 0.0391
20 0.0339 0.0343 0.0341 0.0342 0.0316
30 0.0331 0.0337 0.0336 0.0335 0.0309

12
10 0.0378 0.0355 0.0354 0.0371 0.0360
20 0.0273 0.0282 0.0286 0.0282 0.0257
30 0.0262 0.0273 0.0279 0.0273 0.0244
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Fig. 2: Denoising with n = 128 + 64 and s = 10.

3%. We also investigated the hybrid case where we mix a
generic dictionary built with AK-SVD with a structured SBO
dictionary. The hybrid case provided the best results in our
experiments performed on grayscale images with a significant
impact on the execution time due to the use of AK-SVD.

In the future we plan on researching ways in which we
can adapt the representation stage to take advantage of the
composite structure of the dictionary.
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